

 mscmp_syst_authn

 v0.1.0

 Table of contents

 	Modules

 	MscmpSystAuthn

 	Msdata.SystAccessAccountInstanceAssocs

 	Msdata.SystAccessAccounts

 	Msdata.SystCredentials

 	Msdata.SystDisallowedHosts

 	Msdata.SystDisallowedPasswords

 	Msdata.SystGlobalNetworkRules

 	Msdata.SystGlobalPasswordRules

 	Msdata.SystIdentities

 	Msdata.SystInstanceNetworkRules

 	Msdata.SystOwnerNetworkRules

 	Msdata.SystOwnerPasswordRules

 	Msdata.SystPasswordHistory

 	MscmpSystAuthn.Types

 	MscmpSystAuthn.Types.AppliedNetworkRule

 	MscmpSystAuthn.Types.AuthenticationState

 	MscmpSystAuthn.Types.AuthenticatorResult

 	MscmpSystAuthn.Types.PasswordRules

MscmpSystAuthn

API for the management of user authentication.
This Component provides a global method of authentication for users wishing to
use the system. General features supported by this Component include:
	The ability to host user accounts that are managed by specific tenants

	The ability to host user accounts that are independent of any specific
tenant (e.g. freelance bookkeepers)

	Authentication rights for users to specific Application Instances

	Use of a single user account to authenticate to Application Instances
owned by different tenants.

	Individual tenant controls over certain authentication controls such as
Password Credential complexity or requiring Multi-Factor Authentication

	The ability to establish "Network Rules" which act as a sort of firewall
allowing or denying certain origin host IP addresses or networks the right
to attempt authentication

	Rate limiting of authentication attempts enforced, independently, by
identifier and by originating host IP address

Note that this Component doesn't provide a substantial authorization
capability. Authorization needs are left for higher level, Application
Instance functionality to fulfill.

 Concepts

Below are listed the conceptual ideas that need to be understood to use this
component effectively. Concepts in this Component depend heavily on a number
of concepts derived from the MscmpSystInstance Component so familiarity
with that Component will be helpful in understanding the ideas and functioning
of this authentication component.
Access Accounts
An Access Account is the record type which defines a user of the system for
the purposes of authentication. Ideally, a single Access Account is defined
for any single person in the world that will use the system. The information
that an Access Account captures about a user is limited to only that essential
to the authentication process; this Component does not provide general
information management for the user as a person.
Access Accounts may be Owned Access Accounts or Unowned Access Accounts.
Owned Access Accounts are the more common kind of account and they are
directly managed by tenants (Owners). Owned Access Accounts are the kinds of
accounts which are created by an employer to provide their employees access to
the system. Unowned Access Accounts are created directly by a user of the
system and exist independent of any Owner. Unowned Access Accounts facilitate
independent contractors or freelancers which may need access a variety of
Application Instances owned by different Owners.
Identities
An Identity is the means by which we can identify a specific Access Account
using an identifier known to the Access Account holder. There are different
identifiers and methods of identification depending on the specific
authentication use case being supported.
Identifiers of the same Identifier Type are unique to the Owner/Access Account
combination. All Unowned Access Accounts are considered as being in the same
Owner group for this purpose. This means that the Owner of an Access Account
must be known at authentication time since an identifier may be duplicated
between different Owners.
The supported basic Identity Types used for regular authentication are:
	Email - a typical interactive identification method where a user
provides an email address as the means of identification. An Access Account
may define multiple Email Identities; for example, this can happen when a
user changes email addresses and the old email address must remain valid
prior to the new email address being validated by the Access Account holder.
Email Identities may require validation by the Access Account holder prior
to the email address being usable for identification purposes. Unowned
Access Accounts typically require validation and Owned Access Accounts
typically will not. All valid Email Identities use a common Password
Credential for authenticating the identification.

	API Token - provides an identification mechanism for other programs to
access the system on behalf of the Access Account holder. An Access Account
holder may define an arbitrary number of API Token Identities and typically
should have one API Token Identity for each different program that will
access the system. API Token Identities require that a specific API Token
Credential be provided at authentication time. API Token Identity
identifiers are usually randomly generated strings of characters.

In addition to the basic Identity Types, there are a number of special purpose
Identity Types:
	Account Code - provides a simple to use identifier which can be
provided to third party Owners by an Access Account holder. The use case
here is an Access Account holder wants to access an Application Instance
owned by a different organization than that to which the Access Account
holder belongs. The third party Owner must invite the Access Account holder
to their instance and they issue the invitation to the Access Account
identified by the provided Account Code. This allows third party
identification with necessarily disclosing information such as email
addresses. Note that there is no authentication process and no Credential
for this Identity Type; this Identity Type exists purely for Access Account
identification.

	Validation Token - a single use identifier which is created for the
purpose of validating an Email Identity. Only one Validation Token may
exist for any one Email Identity at a time and the Email Identity may not
already be validated. The Validation Token Identity also requires a
specific Validation Token Credential be provided at authentication time.
Once a Validation Token Identity is successfully authenticated the
associated Email Identity is immediately usable and the Validation Token
Identity/Credential pair is deleted from the system. Validation Token
Identities are typically created with an expiration timestamp after which
the Validation Token Identity may no longer be used.

	Recovery Token - a single use identifier which is created for the
purpose of initiating Password Credential recovery. Only a single Recovery
Token Identity may exist for any Access Account at a time and that Access
Account must have an existing Password Credential record which can be
recovered. The Recovery Token Identity must be authenticated with a
specific Recovery Token Credential. On successful authentication of a
Recovery Token Identity, the Recovery Token Identity/Credential pair is
immediately deleted from the system. Recovery Token Identities are
typically created with an expiration timestamp after which it may not longer
be used. Finally note that the existence of a Recovery Token in no way
prevents the Password Credential from being used in authentication; it is
expected if a recovery process is started accidentally or in attempt at a
malicious recovery of the Password Credential, that the Recovery Identity/
Credential will simply be ignored by the Access Account holder and allowed
to expire.

Credentials
Credentials provide the means for an Access Account holder to prove that they
have correctly identified themselves: that they are who they say they are.
Credentials are the secrets which only the Access Account holder should know
or have the ability to use.
There are a variety of different Credential Types which are typically
associated with a corresponding Identity Type:
	Password - defines a password for Access Account holders to use during
interactive authentication attempts. Typically Password Credentials are
used in association with Email Identities. Only a single Password
Credential may exist for any single Access Account at a time. Password
Credentials are subject to Password Rules which are described later.
Passwords are stored in the system using salted hashes and are not directly
recoverable; forgotten passwords must be reset through a recovery process.

	API Token - used to authenticate API Token Identities. Each API Token
Credential is associated with a specific API Token Identity and may only
authenticate that Identity. API Token Credentials are usually a system
generated string of random characters. API Token Credentials are stored in
the system using salted hashes. At Credential create time, the creating
process is provided with the plaintext credential so that it may be
communicated to the Access Account holder, but is thereafter unrecoverable.

	Validation Token - behaves in most ways the same as the API Token
Credential. They key differences are that each Validation Token Credential
is associated with a specific Validation Token Identity and that
authentication using the Credential is a one time event; after a successful
authentication the Validation Token is deleted from the system.

	Recovery Token - has all of the same behavioral characteristics of the
Validation Token Credential except its context of usage is in Password
Credential Recovery.

Note
When looking at Credential related code, initialization data, tests, and
even in other documentation, you will find references to Multi-Factor
Authentication (MFA) functionality. There are plans to include MFA
functionality and some work towards this goal, but that work is currently
incomplete and deferred until much more of the product is built out.

Authenticators
An Authenticator is simply the combination of related Identities and
Credentials. So, for example, an Access Account holder presenting an
Email/Password combination for authentication is presenting an Email/Password
Authenticator. The concept isn't terribly important to this Component, but
the term does appear elsewhere in the documentation and so deserves definition.
Access Account/Instance Associations
While most authorization activities are outside of the scope of this
Component, one authorization exists that must be granted to an Access Account
prior to its being able to successfully authenticate. All authentications
are performed in the context of authenticating for access to a specific
Application Instance. Owners of that Instance must authorize an Access
Account to authenticate to their Instance prior to the authentication process
succeeding (see MscmpSystInstance for more on Owners and Instances).
Owned Access Accounts are typically granted access to all or specific
Instances of the Owner which owns the Access Account. Unowned Access Accounts
are typically invited by an Owner to access a specific Instance and the
Unowned Access Account holder must first accept the invitation to access the
Instance prior to using it; the Access Account holder may also explicitly
decline such an invitation if they so choose.
Both the invitations to access and the permission to access an Instance are
known as Access Account/Instance Associations. The various attributes of the
Association record determine if an invitation is outstanding, declined, or if
access has been granted.
Network Rules
Network Rules are a simple whitelist/blacklist mechanism which evaluates the
apparent origin IP address of an inbound authentication attempt and determines
if that host is allowed to attempt an authentication. Network Rules may be
defined established at the Global level (applicable to all Owners and
Instances), the Owner level, or the Application Instance level. Each Rule
can be designated to apply to a single host, an IP network, or a simple range
of IP addresses. When a host is seen for which no Network Rule has been
defined, a system default rule is applied which implicitly allows the
authentication attempt.
A special type of Network Rule called a Disallowed Host also exists. A
Disallowed Host is exactly as it sounds: a specific originating IP address
which is not allowed to authenticate users to the system. Disallowed Hosts
are checked on a Global basis and the purpose of the list is to stop hosts
determined to be behaving suspiciously from attempting authentications.
Suspicious behavior is determined using a set of (currently naive) heuristics
which are only evaluated for hosts attempting authentications under the system
default implied Network Rule.
Password Rules
Password Rules define the standards that constitute acceptable passwords for
use as Credentials during interactive authentication processes. A Global
Password Rule exists which sets the minimum requirements that all passwords in
the system must meet before being accept for use. Owners may each establish
Owner Password Rules which govern the Access Accounts that they own. Owner
Password Rules may not reduce the stringency demanded of the Global Password
Rules, they can only increase the required stringency for their owned Access
Accounts. If an Owner defined Password Rule does define a less stringent
standard than demanded by the Global Password Rules, the Global Password Rule
continue to be the one applied. This evaluation is made rule by rule such
that the effective Password Rules that an Access Account holder sees may be a
mix of the more stringent combination of both the Owner and Global Password
Rules.
Note
The term "stringency", or "weakening" which appears elsewhere in some
documentation, must not be understood to necessarily mean a strengthening or
weakening in security. For example, an Owner may elect to set password
rules which require that a password contain at least one each of lower,
upper, number, and symbol characters. Such a rule would be more stringent
than the Global Password Rules default settings which have no such
complexity requirements but would not be more secure than those default
rules according to studies on the matter. In fact, defining rules with
greater stringency may well result in less security than that offered by the
default Global Password Rules.
Studies which provide further insight:
Human Generated Passwords – The Impacts of Password Requirements and Presentation Styles (2015)
Practical Recommendations for Stronger, More Usable Passwords Combining Minimum-strength, Minimum-length, and Blocklist Requirements (2020)

The default Global Password Rules are largely compatible with "Authenticator
Assurance Level 1" as defined by the National Institute of Standards and
Technology's Special Publication 800-63B.
For guidelines on the specific rules that may be configured, see
MscmpSystAuthn.Types.password_rule_params/0. Note that
"Authenticator" in the NIST document context is not the same as we've defined
above.
A special additional type of Global Password Rule exists referred to as the
Disallowed Password list. This is a list of passwords that are well known or
are known to be compromised and that, because of this, are disallowed from
usage so long as the "Disallow Compromised" rule is in effect. Disallowed
Passwords are stored as SHA-1 hashes of the password for reasonable
obfuscation of the passwords and for compatibility with services such as those
that are available from services such as "Have I Been Pwned?".
Rate Limits
The system attempts to dissuade brute force hacking efforts by implementing
limits on the number of failed authentication attempts which are allowed.
There are currently two Rate Limits implemented.
The first enforces that an identifier may not be used in any more than five
consecutive failed authentication attempts in any 30 minute period. After the
fifth failure, the identifier will immediately be prevented from participating
in any further authentication attempts for the remainder of the 30 minute
window.
The second Rate Limit is host IP based. Any host IP address seen to have 30
consecutive authentication failures over the course of two hours is
automatically added to the Disallowed Hosts list and prevented from further
attempts to authenticate until an administrator removes the host from the
list. This Rate Limit is only applied to host IP addresses which are only
allowed access due to the implied default Network Rule; any explicitly allowed
host IP address is exempted from this Rate Limit.
Any successful authentication event will reset the counters enforcing either
of the Rate Limits.

 Summary

 Authenticator Management

 access_account_credential_recoverable!(access_account_id)

 Indicates if an Access Account's Password Credential is recoverable or not.

 create_authenticator_api_token(access_account_id, opts \\ [])

 Creates an API Token Authenticator for the requested Access Account.

 create_authenticator_email_password(access_account_id, email_address, plaintext_pwd, opts \\ [])

 Creates an Email/Password Authenticator for an Access Account.

 request_identity_validation(target_identity, opts \\ [])

 Requests the creation of a Validation Token Authenticator for the specified
Identity.

 request_password_recovery(access_account_id, opts \\ [])

 Requests to start a Password Credential recovery process for the specified
Access Account.

 reset_password_credential(access_account_id, new_credential)

 Allows for an existing password to be changed to a new password.

 revoke_api_token(identity)

 Revokes the request API Token Authenticator by deleting it from the system.

 revoke_password_recovery(access_account_id)

 Revokes the Recovery Token Authenticator for a previously initiated Password
Credential recovery.

 revoke_validator_for_identity_id(target_identity_id)

 Revokes a Validation Authenticator ("Validator") issued for the requested
Identity.

 update_api_token_external_name(identity, external_name)

 Updates the External Name value of an existing API Token Identity.

 Authentication

 authenticate_api_token(identifier, plaintext_token, host_addr, instance_id, opts \\ [])

 Identities and authenticates an Access Account using an API Token
Authenticator.

 authenticate_email_password(authentication_state, opts \\ [])

 Identifies and authenticates an Access Account on the basis of a starting
Authentication State value constructed for Email/Password authentication.

 authenticate_email_password(email_address, plaintext_pwd, host_address, opts \\ [])

 Identities and authenticates an Access Account using an Email/Password
Authenticator.

 authenticate_recovery_token(identifier, plaintext_token, host_addr, opts \\ [])

 Confirms an Access Account's password Recovery Token Authenticator.

 authenticate_validation_token(identifier, plaintext_token, host_address, opts \\ [])

 Confirms a specific Access Account Identity record as being valid for use.

 Account Codes

 create_or_reset_account_code(access_account_id, opts \\ [])

 Creates a new Account Code for an Access Account or resets the Account Code if
is already exists.

 get_account_code_by_access_account_id(access_account_id)

 Retrieves the Account Code Identity record defined for the requested Access
Account if one exists.

 identify_access_account_by_code(account_code, owner_id)

 Identifies an Access Account by its Account Code identifier.

 revoke_account_code(access_account_id)

 Revokes a previously create Account Code Identity from an Access Account,
deleting it from the system.

 Access Accounts

 access_account_exists?(opts \\ [])

 Tests to see if a specific Access Account, or any Access Account, record
exists in the database.

 create_access_account(access_account_params)

 Create a new Access Account.

 get_access_account_by_name(access_account_name)

 Retrieves a fully populated Access Account record as found by internal name.

 get_access_account_id_by_name(access_account_name)

 Looks up an Access Account record ID by its internal name.

 get_access_account_state_by_name(access_account_state_name)

 Returns the Access Account State record for the given Internal Name; raises on
error.

 get_access_account_state_default(functional_type \\ nil)

 Returns the Access Account State Enumeration record which is configured as
being default.

 purge_access_account(access_account)

 Purges the requested Access Account if the Access Account State is of
a purge eligible functional type.

 update_access_account(access_account, access_account_params)

 Updates the maintainable fields of a given Access Account record.

 Access Account Instance Assocs

 accept_instance_invite(access_account_instance_assoc)

 Accepts the invitation made to an Access Account to access an Instance.

 accept_instance_invite(access_account_id, instance_id)

 Accepts the invitation made to an Access Account to access an Instance,
referencing the record by its composite key values.

 decline_instance_invite(access_account_instance_assoc)

 Declines an unaccepted/unexpired invitation made to an Access Account to
access an Instance.

 decline_instance_invite(access_account_id, instance_id)

 Declines an unaccepted/unexpired invitation made to an Access Account to
access an Instance, referencing the record by its composite key values.

 invite_to_instance(access_account_id, instance_id, opts \\ [])

 Invites or re-invites an Access Account to establish access rights to a
specific Instance.

 revoke_instance_access(access_account_instance_assoc)

 Revokes the access or invitation to access an Instance from the given Access
Account.

 revoke_instance_access(access_account_id, instance_id)

 Revokes the access or invitation to access an Instance from the given Access
Account/Credential Type combination, referencing the record by its composite
key values.

 Password Rules

 create_disallowed_password(password)

 Adds a new password to the Disallowed Passwords list.

 create_owner_password_rules(owner_id, insert_params)

 Creates Owner Password Rules for the requested Owner.

 delete_disallowed_password(password)

 Removes a password from the disallowed passwords list.

 delete_owner_password_rules(owner_id)

 Deletes an Owner Password Rules record from the system.

 disallowed_passwords_populated?()

 Tests if the Disallowed Password List has any entries or not.

 get_access_account_password_rule(access_account_id)

 Retrieves the Password Rules to apply for a requested Access Account as
identified by its record ID.

 get_access_account_password_rule!(access_account_id)

 Retrieves the Password Rules to apply for a requested Access Account as
identified by its record ID, raising on error.

 get_generic_password_rules(pwd_rules_struct, access_account_id \\ nil)

 Converts a Global or Owner Password Rule struct into the generic map based
Password Rule required by some functions.

 get_global_password_rules()

 Retrieves the currently active Global Password Rules.

 get_global_password_rules!()

 Retrieves the currently active Global Password Rules, raising on error.

 get_owner_password_rules(owner_id)

 Retrieves the currently active Owner Password Rules for the requested Owner.

 get_owner_password_rules!(owner_id)

 Retrieves the currently active Owner Password Rules for the requested Owner,
raising on error.

 load_disallowed_passwords(password_list, opts \\ [])

 Bulk loads a list of passwords into the Disallowed Passwords database table.

 password_disallowed(password)

 Indicates whether the requested password is disallowed.

 password_disallowed?(password)

 Indicates whether the requested password is disallowed, raising on error.

 test_credential(pwd_rules_or_access_account_id, plaintext_pwd)

 Tests a candidate password against the effective Password Rules for a given
Access Account.

 update_global_password_rules(update_params)

 Updates the Global Password Rules with new values.

 update_global_password_rules(global_password_rules, update_params)

 Updates the Global Password Rules with new values using a caller provided
data source record.

 update_owner_password_rules(owner, update_params)

 Updates the Owner Password Rules with new values.

 verify_password_rules(test_rules, standard_rules \\ nil)

 Compares a "Test" set of Password Rules against a "Standard" set of Password
Rules and reports on which of the "Test" Rules are considered less stringent
than the "Standard" Rules.

 verify_password_rules!(test_rules, standard_rules \\ nil)

 Compares a "Test" set of Password Rules against a "Standard" set of Password
Rules and reports on which of the "Test" Rules are considered less stringent
than the "Standard" Rules, raising on error.

 Network Rules

 create_disallowed_host(host_address)

 Adds a host IP address to the global disallowed hosts list.

 create_global_network_rule(insert_params)

 Creates a new Global Network Rule using the provided parameters.

 create_instance_network_rule(instance_id, insert_params)

 Creates a new Instance Network Rule using the provided parameters.

 create_owner_network_rule(owner_id, insert_params)

 Creates a new Owner Network Rule using the provided parameters.

 delete_disallowed_host(disallowed_host)

 Deletes a host IP address from the Disallowed Hosts list based on either a
Msdata.SystDisallowedHosts record or the ID of such a
record.

 delete_disallowed_host_addr(host_addr)

 Deletes a host IP address from the Disallowed Hosts list as looked up by the
host IP address.

 delete_global_network_rule(global_network_rule_id)

 Deletes an existing Global Network Rule record as referenced by the record ID.

 delete_instance_network_rule(instance_network_rule_id)

 Deletes an existing Instance Network Rule record as referenced by the record
ID.

 delete_owner_network_rule(owner_network_rule_id)

 Deletes an existing Owner Network Rule record as referenced by the record ID.

 get_applied_network_rule(host_address, instance_id \\ nil, instance_owner_id \\ nil)

 Returns the Network Rule which should be applied for the given Host IP Address.

 get_applied_network_rule!(host_address, instance_id \\ nil, instance_owner_id \\ nil)

 Returns the Network Rule which should be applied for the given Host IP
Address, raising on error.

 get_disallowed_host_record_by_host(host_addr)

 Retrieves a Disallowed Host record from the database as identified by its host
address.

 get_disallowed_host_record_by_host!(host_addr)

 Retrieves a Disallowed Host record from the database as identified by its host
address, raising on error.

 get_disallowed_host_record_by_id(disallowed_host_id)

 Retrieves a Disallowed Host record by the record ID.

 get_disallowed_host_record_by_id!(disallowed_host_id)

 Retrieves a Disallowed Host record by the record ID, raising on error.

 get_global_network_rule(global_network_rule_id)

 Retrieves a Global Network Rule record based on its record ID.

 get_global_network_rule!(global_network_rule_id)

 Retrieves a Global Network Rule record based on its record ID, raising on
error.

 get_instance_network_rule(instance_network_rule_id)

 Retrieves a Instance Network Rule record based on its record ID.

 get_instance_network_rule!(instance_network_rule_id)

 Retrieves a Instance Network Rule record based on its record ID, raising on
error.

 get_owner_network_rule(owner_network_rule_id)

 Retrieves a Owner Network Rule record based on its record ID.

 get_owner_network_rule!(owner_network_rule_id)

 Retrieves a Owner Network Rule record based on its record ID, raising on
error.

 host_disallowed(host_address)

 Indicates whether the provided host IP address is to be denied access to the
system.

 host_disallowed?(host_address)

 Indicates whether the provided host IP address is to be denied access to the
system, raising on error.

 update_global_network_rule(global_network_rule, update_params)

 Updates an existing Global Network Rule with new values.

 update_instance_network_rule(instance_network_rule, update_params)

 Updates an existing Instance Network Rule with new values.

 update_owner_network_rule(owner_network_rule, update_params)

 Updates an existing Owner Network Rule with new values.

 Enumeration Access

 get_credential_type_by_name(credential_type_name)

 Returns the Credential Type record for the given Internal Name; raises on error.

 get_credential_type_default(functional_type \\ nil)

 Returns the Credential Type Enumeration record which is configured as being
default.

 get_identity_type_by_name(identity_type_name)

 Returns the Identity Type record for the given Internal Name; raises on error.

 get_identity_type_default(functional_type \\ nil)

 Returns the Identity Type Enumeration record which is configured as being
default.

 Authenticator Management

 Link to this function

 access_account_credential_recoverable!(access_account_id)

 @spec access_account_credential_recoverable!(MscmpSystAuthn.Types.access_account_id()) ::
 :ok | :not_found | :existing_recovery

Indicates if an Access Account's Password Credential is recoverable or not.
Access Account Password Credentials are only recoverable when they: 1) exist,
and 2) are not already awaiting recovery. When the Password Credential is
recoverable this function will return a simple :ok value. If the Access
Account's Password Credential already has an issued recovery underway, the
value :existing_recovery is returned. If the Access Account lacks a
Password Credential record to recover, the value :not_found is returned. Any
errors encountered cause the function to raise an exception.

 Parameters

	access_account_id - the record ID of the Access Account which owns the
Password Credential to test for recoverability.

 Link to this function

 create_authenticator_api_token(access_account_id, opts \\ [])

 @spec create_authenticator_api_token(
 MscmpSystAuthn.Types.access_account_id(),
 Keyword.t()
) ::
 {:ok, MscmpSystAuthn.Types.AuthenticatorResult.t()}
 | {:error, MscmpSystError.t() | Exception.t()}

Creates an API Token Authenticator for the requested Access Account.
On successful API Token Authenticator creation, a success tuple is returned
where the value element is an Authenticator Result in the form of:
{ :ok,
 %{
 access_account_id: "c3c7fafd-5c45-11ed-ab46-f3d9be809bf9",
 account_identifier: "EQH2jj38ha4qnYWAC8VZ",
 credential: "8N5Tp81aeOCrYW9PECANrcwKCroSet3MlMp5BbKb"
}}
It is important to note that this result value is the only time that the API
Token Credential plaintext is available. After the function result is
discarded the credential is no longer obtainable in plaintext form.

 Parameters

	access_account_id - the record ID of the Access Account for which to
create the API Token Authenticator.

	opts - a Keyword List of optional values which changes the default
behavior of the Authenticator creation process. Available options are:
	identity_token_length - this option overrides the default number of
random characters to generate for the API Token Identity identifier. The
default number of characters generated is 20.

	identity_tokens - overrides the default character set to use in the
generation of the API Token Identity identifier. The default value is
:mixed_alphanum. See the MscmpSystUtils.get_random_string/2
documentation for the tokens parameter which receives this option for
more information regarding valid values for this setting.

	external_name - API Token Identities permit Access Account holder
naming of the Identity as it may be common for an one Access Account to
require multiple API Token Authenticators for different purposes. This
option allows that name to be set at Identity creation time. The default
value is nil.

	credential_token_length - this option overrides the default number of
random characters to generate for the API Token Credential. The default
number of characters generated is 40.

	credential_tokens - overrides the default character set to use in the
generation of the API Token Credential. The default value is
:mixed_alphanum. See the MscmpSystUtils.get_random_string/2
documentation for the tokens parameter which receives this option for
more information regarding valid values for this setting.

	credential_token - overrides the system generated API Token Credential
with the value of this option. The default is to allow the system to
automatically generate the credential.

 Link to this function

 create_authenticator_email_password(access_account_id, email_address, plaintext_pwd, opts \\ [])

 @spec create_authenticator_email_password(
 MscmpSystAuthn.Types.access_account_id(),
 MscmpSystAuthn.Types.account_identifier(),
 MscmpSystAuthn.Types.credential(),
 Keyword.t()
) ::
 {:ok, MscmpSystAuthn.Types.AuthenticatorResult.t()}
 | {:error, MscmpSystError.t() | Exception.t()}

Creates an Email/Password Authenticator for an Access Account.
This function creates an Email Identity, Password Credential, and optionally
an Identity Validation Authenticator (created by default). This function is
typically used on adding a new Access Account to the system. The process is
wrapped in a database transaction so if any one part of the Authenticator
creation process fails, all parts should fail.
This function will fail if you attempt to create an Authenticator of this
type for an Access Account which already has one. In the case of Email
Identity replacement, use the specific Identity process to create a new Email
Identity instead of this more expansive process.
On successful save of the Authenticator records, a success tuple is returned
where the value element of the tuple will include basic data that might be
required for later processing.
If Email/Password Authenticator was created requiring validation (the
default), the success tuple's value element will include data required to
process the Validation Authenticator:
{:ok,
 %{
 access_account_id: "c3c7fafd-5c45-11ed-ab46-f3d9be809bf9",
 account_identifier: "SomeEmail@somedomain.com",
 validation_credential: "Uo0kPoCOZd004g4X7IFWg3iJ7pz7XiBRBDkBGGiu",
 validation_identifier: "5D7i6XmmH0HpYL72tePlEdSUMVL9ygMrEsDSGoTE"
}}
Note that this is the only time the Validation Authenticator is provided and
the Validation Credential plaintext is not recoverable after this return value
is provided.
When a Validation Authenticator is not created, no validation data will be
included in the result:
{:ok,
 %{
 access_account_id: "c3c7fafd-5c45-11ed-ab46-f3d9be809bf9",
 account_identifier: "SomeEmail@somedomain.com"
}}

 Parameters

	access_account_id - the Access Account for whom the Email/Password
Authenticator is being created.

	email_address - the email address which will identify the Access
Account.

	plaintext_pwd - the candidate password for use a the Credential in
Email/Password authentication processes.

 Link to this function

 request_identity_validation(target_identity, opts \\ [])

 @spec request_identity_validation(
 MscmpSystAuthn.Types.identity_id() | Msdata.SystIdentities.t(),
 Keyword.t()
) ::
 {:ok, MscmpSystAuthn.Types.AuthenticatorResult.t()}
 | {:error, MscmpSystError.t() | Exception.t()}

Requests the creation of a Validation Token Authenticator for the specified
Identity.
On successful creation of the requested Validation Token Authenticator, an
Authenticator Result will be returned as the value element of a success tuple:
{ :ok,
 %{
 access_account_id: "c3c7fafd-5c45-11ed-ab46-f3d9be809bf9",
 validation_identifier: "psYFOfuULJPTbs5MUvOYTyt71fAbQCj7XcmerRlQ",
 validation_credential: "zz29w7l5Ev7vuRlGFHcPPjLTXjepdbYlyQwbBjDe"
}}
Importantly, the system generated Validation Token identifier and plaintext
credential are returned to the caller. This is the only opportunity to obtain
the plaintext credential; after the return value of the function is disposed
of there is no way to once again retrieve the plaintext of the Validation
Token Credential.
Once the Validation Token Authenticator has been successfully created, the
target Identity (typically an Email Identity) may not be used for
authentication until the Validation Token itself has been successfully
authenticated via the authenticate_validation_token/4 function.
The created Validation Token Authenticator will expire after a time. After
expiration the the Authenticator will no longer be to be authenticated by
authenticate_validation_token/4. The only way to validate the target
Identity at that point is to create a new Validation Token Authenticator for
the Identity using this function.

 Parameters

	target_identity - either the record ID or the
Msdata.SystIdentities struct of the Identity record
to validate. Typically this Identity will be an Email Identity.

	opts - a Keyword List of options which can change the behavior to the
Identity validation request. The available options are:
	expiration_hours - overrides the default number of hours after which
to consider the Validation Authenticator expired. By default the
Validation Authenticator expires 24 hours after creation.

	identity_token_length - this option overrides the default number of
random characters to generate for the Validation Token Identity
identifier. The default number of characters generated is 40.

	identity_tokens - overrides the default character set to use in the
generation of the Validation Token Identity identifier. The default value
is :mixed_alphanum. See the MscmpSystUtils.get_random_string/2
documentation for the tokens parameter which receives this option for
more information regarding valid values for this setting.

	credential_token_length - this option overrides the default number of
random characters to generate for the Validation Token Credential. The
default number of characters generated is 40.

	credential_tokens - overrides the default character set to use in the
generation of the Validation Token Credential. The default value is
:mixed_alphanum. See the MscmpSystUtils.get_random_string/2
documentation for the tokens parameter which receives this option for
more information regarding valid values for this setting.

	credential_token - overrides the system generated Validation
Credential with the value of this option. The default is to allow the
system to automatically generate the credential.

 Link to this function

 request_password_recovery(access_account_id, opts \\ [])

 @spec request_password_recovery(MscmpSystAuthn.Types.access_account_id(), Keyword.t()) ::
 {:ok, MscmpSystAuthn.Types.AuthenticatorResult.t()}
 | {:error, MscmpSystError.t() | Exception.t()}

Requests to start a Password Credential recovery process for the specified
Access Account.
Assuming that the Access Account's Password Credential exists and isn't
already being recovered, this function will create a new Recovery Token
Authenticator for the Access Account's Password Credential.
On successful creation of the requested Recovery Token Authenticator, an
Authenticator Result will be returned as the value element of a success tuple:
{ :ok,
 %{
 access_account_id: "c3c7fafd-5c45-11ed-ab46-f3d9be809bf9",
 account_identifier: "acdyItesdmUvUoM7mKwPKd3mrBBnH87L2WA1DPip",
 credential: "WYbFG2vkJOLD5ITX9tSE5OTZ9JlHdJE8BQ8Ukiiq"
}}
Importantly, the system generated Recovery Token account identifier and
plaintext credential are returned to the caller. This is the only opportunity
to obtain the plaintext credential; after the return value of the function is
disposed of there is no way to once again retrieve the plaintext of the
Recovery Token Credential.
The existence of a Recovery Token Authenticator for a Password Credential does
not prevent that Password Credential from continuing to be used in the
authentication process.
A Recovery Token Authenticator will expire after a time. After expiration the
Recovery Token will no longer be able to be authenticated with
authenticate_recovery_token/4. Any further recovery of the Password
Credential will require a new Recovery Token be created.

 Parameters

	access_account_id - the record ID of the Access Account to which the
Password Credential needing recovering belongs.

	opts - a Keyword List of options which can change the behavior to the
password recovery request. The available options are:
	expiration_hours - overrides the default number of hours after which
to consider the Recovery Authenticator expired. By default the Recovery
Authenticator expires 24 hours after creation.

	identity_token_length - this option overrides the default number of
random characters to generate for the Recovery Token Identity identifier.
The default number of characters generated is 40.

	identity_tokens - overrides the default character set to use in the
generation of the Recovery Token Identity identifier. The default value
is :mixed_alphanum. See the MscmpSystUtils.get_random_string/2
documentation for the tokens parameter which receives this option for
more information regarding valid values for this setting.

	credential_token_length - this option overrides the default number of
random characters to generate for the Recovery Token Credential. The
default number of characters generated is 40.

	credential_tokens - overrides the default character set to use in the
generation of the Recovery Token Credential. The default value is
:mixed_alphanum. See the MscmpSystUtils.get_random_string/2
documentation for the tokens parameter which receives this option for
more information regarding valid values for this setting.

	credential_token - overrides the system generated Recovery Credential
with the value of this option. The default is to allow the system to
automatically generate the credential.

 Link to this function

 reset_password_credential(access_account_id, new_credential)

 @spec reset_password_credential(
 MscmpSystAuthn.Types.access_account_id(),
 MscmpSystAuthn.Types.credential()
) ::
 :ok
 | MscmpSystAuthn.Types.credential_set_failures()
 | {:error, MscmpSystError.t()}

Allows for an existing password to be changed to a new password.
The assumption is that a Password Credential already exists and that only the
password itself is being changed from an old value to a new value.
This function ensures that the new password meets all applicable Password
Rules prior to completing the change. This function will not allow you to set
the password to an invalid value.
Finally, in the case of a user initiated password change, it is traditional
that the user has to re-authenticate or provide their current password to
verify they are, in fact, the person initiating the change. This function
does not try to achieve this goal. The scope of this function assumes that
any such confirmation of identity has been completed satisfactorily elsewhere.
On successful Password Credential reset this function will return :ok. If
the new credential fails to meet the Password Rule criteria that applies to
it, the function will return a failure tuple of type
MscmpSystAuthn.Types.credential_set_failures/0. All other return
conditions are errors and result in an error tuple.

 Parameters

	access_account_id - the Access Account for whom the Password is being
changed.

	new_credential - the new Password which will become the credential on
the successful completion of the function.

 Link to this function

 revoke_api_token(identity)

 @spec revoke_api_token(MscmpSystAuthn.Types.identity_id() | Msdata.SystIdentities.t()) ::
 {:ok, :deleted | :not_found} | {:error, MscmpSystError.t()}

Revokes the request API Token Authenticator by deleting it from the system.
API Token Authenticators will regularly need to be decommissioned from the
system by the Access Account holders they represent. By revoking an API
Token it is deleted from system.
A successful deletion will return a success tuple if the form
{:ok, :deleted}. If the API Token Identity is not found this function will
return a success tuple of {:ok, :not_found}. Any other outcome is an error
and results in an error tuple being returned.

 Parameters

	identity - either the record ID of the API Token Identity to revoke or
the current-state Msdata.SystIdentities struct of
that record.

 Link to this function

 revoke_password_recovery(access_account_id)

 @spec revoke_password_recovery(MscmpSystAuthn.Types.access_account_id()) ::
 {:ok, :deleted | :not_found} | {:error, MscmpSystError.t() | Exception.t()}

Revokes the Recovery Token Authenticator for a previously initiated Password
Credential recovery.
While Recovery Token Authenticators expire of their own accord after a time,
they may also explicitly be revoked. In reality this means simply deleting
the Recovery Token Authenticator from the system.
The return value of this function on successful execution will be the success
tuple {:ok, :deleted}. If a recovery is not already underway for the
requested Access Account, the function will return successfully but will
indicate that no action took place with a return of {:ok, :not_found}. Any
other condition is an error condition and the return value will be an error
tuple indicating the nature of the issue.

 Parameters

	access_account_id - identifies the Access Account for whom the Recovery
Token Authenticator should be revoked. The expected value is the record ID
of the Access Account.

 Link to this function

 revoke_validator_for_identity_id(target_identity_id)

 @spec revoke_validator_for_identity_id(MscmpSystAuthn.Types.identity_id()) ::
 {:ok, :deleted | :not_found} | {:error, MscmpSystError.t() | Exception.t()}

Revokes a Validation Authenticator ("Validator") issued for the requested
Identity.
While Validators will expire on their own if not confirmed first, there are
cases where Validators should be revoked prior to that time, such as if the
Validator communication to the user has been lost and a new Validator needs to
be generated.
The return value is a result tuple which indicates whether or not the
revocation happened ({:ok, :deleted}), if the Validator was not found
({:ok, :not_found}), or an error tuple in any other circumstance.

 Parameters

	target_identity_id - the record ID of the Identity record which the
Validator was meant to validate. So if the Validator to revoke was for an
Email Identity, this value would be the ID of the Email Identity and not the
Validation Identity.

 Link to this function

 update_api_token_external_name(identity, external_name)

 @spec update_api_token_external_name(
 MscmpSystAuthn.Types.identity_id() | Msdata.SystIdentities.t(),
 String.t() | nil
) :: {:ok, Msdata.SystIdentities.t()} | {:error, MscmpSystError.t()}

Updates the External Name value of an existing API Token Identity.
API Token Identities permit Access Account holder naming of the Identity as it
may be common for an one Access Account to require multiple API Token
Authenticators for different purposes.
On success this function returns a success tuple where the value element of
the tuple is the updated Msdata.SystIdentities struct.
On error, an error tuple is returned.

 Parameters

	identity - either the record ID of the API Token Identity to update or
the current-state Msdata.SystIdentities struct of
that record.

	external_name - the text of the updated External Name value or nil to
remove the text of an existing non-nil value.

 Authentication

 Link to this function

 authenticate_api_token(identifier, plaintext_token, host_addr, instance_id, opts \\ [])

 @spec authenticate_api_token(
 MscmpSystAuthn.Types.account_identifier(),
 MscmpSystAuthn.Types.credential(),
 MscmpSystNetwork.Types.addr_structs(),
 MscmpSystInstance.Types.instance_id(),
 Keyword.t()
) ::
 {:ok, MscmpSystAuthn.Types.AuthenticationState.t()}
 | {:error, MscmpSystError.t()}

Identities and authenticates an Access Account using an API Token
Authenticator.
The return value of this function is a result tuple where a success tuple
({:ok, <value>}) indicates that the function processed without error, not
that the API Token Authenticator was successfully authenticated. The value
element of the success tuple, the Authentication State, carries information
about the actual outcome of the authentication attempt; see
MscmpSystAuthn.Types.AuthenticationState.t/0 for more about the
specific information carried by the Authentication State value. Otherwise,
an error tuple is returned indicating the nature of the processing failure.
The authentication process executed by this function is not interruptible.
The initial call to this function must contain all parameter values required
to fully complete the authentication process. Any missing information will
cause the authentication attempt to be rejected.

 Parameters

	identifier - the identifier defined by the API Token identifier.
Typically this would have been a system generated random string of
characters available at API Token Authenticator creation time.

	plaintext_token - the plaintext API Token credential. Typically this
would have been a system generated random string of characters available at
API Token Authenticator creation time.

	host_address - the apparent origin host IP address from where the
authentication attempt is originating. This value is used in the
enforcement of applicable Network Rules.

	opts - a Keyword List of values that either optionally override default
behaviors of this function or are optionally required. The available
options are:
	owning_owner_id - if the Access Account is an Owned Access Account,
this value must be set to the record ID of the Access Account's Owner.
Otherwise it must be set nil or not provided. The default value is
nil.

	instance_id - the record ID of the Application Instance to which the
Access Account holder wishes to authenticate. This value is required must
be provided at function call time or the Authentication State will be
returned in a :rejected status. In special cases where the
authentication attempt is outside of the context of a specific Instance,
the special value :bypass may be used for this option indicating that
the authentication attempt may skip the permitted Instance check. There is
no default value (default nil).

	host_ban_rate_limit - overrides the default host IP address based Rate
Limit. The value is set via a tuple in the following form:
{<Maximum Attempts>, <Time Window in Seconds>}. The default value is 30
attempts over a time window of 2 hours.

	identifier_rate_limit - overrides the default identifier based Rate
Limit. The value is set via a tuple in the following form:
{<Maximum Attempts>, <Time Window in Seconds>}. The default value is 5
attempts over a time window of 30 minutes.

	deadline_minutes - overrides the default number of minutes that an
authentication process can take before being rejected for taking too long.
This deadline is needed because an arbitrary time can pass due to user
interaction if the authenticator allows for an interruptable
authentication process. The default deadline allows for 5 minutes to
complete the authentication process.

 Link to this function

 authenticate_email_password(authentication_state, opts \\ [])

 @spec authenticate_email_password(
 MscmpSystAuthn.Types.AuthenticationState.t(),
 Keyword.t()
) ::
 {:ok, MscmpSystAuthn.Types.AuthenticationState.t()}
 | {:error, MscmpSystError.t()}

Identifies and authenticates an Access Account on the basis of a starting
Authentication State value constructed for Email/Password authentication.
This function works the same as authenticate_email_password/4 except that it
expects an existing Authentication State value to contain the basic
information to process the authentication, with other parameters provided via
the opts parameter. This function is typically used to continue a
previously interrupted call to authenticate_email_password/4 and supplying
it the necessary additional information to continue processing the
authentication to completion.
The options available for use here are the same as for
authenticate_email_password/4. However the options specified here are only
valid if they are applied to authentication process operations that are still
pending when this function is called. Options influencing operations
previously processed, such as owning_owner_id as used in Access Account
identification will simply be ignored if they are different in the resumption
of the process than they were in the initiating call.
See authenticate_email_password/4 for a discussion of the possible return
values.

 Link to this function

 authenticate_email_password(email_address, plaintext_pwd, host_address, opts \\ [])

 @spec authenticate_email_password(
 MscmpSystAuthn.Types.account_identifier(),
 MscmpSystAuthn.Types.credential(),
 MscmpSystNetwork.Types.addr_structs(),
 Keyword.t()
) ::
 {:ok, MscmpSystAuthn.Types.AuthenticationState.t()}
 | {:error, MscmpSystError.t()}

Identities and authenticates an Access Account using an Email/Password
Authenticator.
The return value of this function is a result tuple where a success tuple
({:ok, <value>}) indicates that the function processed without error, not
that the authentication was successful. The value element of the success
tuple, the Authentication State, carries information about the outcome of the
authentication attempt; see
MscmpSystAuthn.Types.AuthenticationState.t/0 for more about the
specific information carried by the Authentication State value. Otherwise,
an error tuple is returned indicating the nature of the processing failure.
Email/Password authentication is an interruptible process, meaning that this
function may return prior to the authentication having been fully processed to
a final result. The two most common examples of when this partial processing
may happen are:
	The Application Instance was not initially identified.
	Further authentication is required such as when Multi-Factor Authentication
is required.

In these cases the returned Authentication State is resubmitted
for processing via authenticate_email_password/2 along with the updated
information which allows authentication processing to complete.

 Parameters

	email_address - this is the username in the form of an email address
used to identify the correct Email Identity record which in turn identifies
a specific Access Account.

	plaintext_pwd - the Access Account holder's password as submitted in
plaintext. This is the credential that will be authenticated using the
Password Credential record belonging to the identified Access Account.

	host_address - the apparent origin host IP address from where the
authentication attempt is originating. This value is used in the
enforcement of applicable Network Rules.

	opts - a Keyword List of values that either optionally override default
behaviors of this function, are optionally required, or are required on a
deferred basis (eventually required). The available options are:
	owning_owner_id - if the Access Account is an Owned Access Account,
this value must be set to the record ID of the Access Account's Owner.
Otherwise it must be set nil or not provided. The default value is
nil.

	instance_id - the record ID of the Application Instance to which the
Access Account holder wishes to authenticate. A final value for
instance_id is not required when the Email/Password authentication process
is initiated but is required for it to complete. If this value is not
initially provided, the function will be interrupted returning an
Authentication State status value of :pending. Deferral may be
appropriate if, for example, we want to allow the Access Account holder to
select the specific Instance they wish to access from a list of their
permitted Instances. Final resolution of the value must reference an
Instance for which the Access Account permitted authentication attempts or
must be set :bypass if the authentication attempt is a special case
where a specific Instance is not relevant. The default value of this
option is nil.

	host_ban_rate_limit - overrides the default host IP address based Rate
Limit. The value is set via a tuple in the following form:
{<Maximum Attempts>, <Time Window in Seconds>}. The default value is 30
attempts over a time window of 2 hours.

	identifier_rate_limit - overrides the default identifier based Rate
Limit. The value is set via a tuple in the following form:
{<Maximum Attempts>, <Time Window in Seconds>}. The default value is 5
attempts over a time window of 30 minutes.

	deadline_minutes - overrides the default number of minutes that an
authentication process can take before being rejected for taking too long.
This deadline is needed because an arbitrary time can pass due to user
interaction, such as selecting an Instance or providing an MFA credential.
The default value is 5 minutes from the time the authentication process is
started.

 Link to this function

 authenticate_recovery_token(identifier, plaintext_token, host_addr, opts \\ [])

 @spec authenticate_recovery_token(
 MscmpSystAuthn.Types.account_identifier(),
 MscmpSystAuthn.Types.credential(),
 MscmpSystNetwork.Types.addr_structs(),
 Keyword.t()
) ::
 {:ok, MscmpSystAuthn.Types.AuthenticationState.t()}
 | {:error, MscmpSystError.t()}

Confirms an Access Account's password Recovery Token Authenticator.
The return value of this function is a result tuple where a success tuple
({:ok, <value>}) indicates that the function processed without error, not
that the Recovery Token Authenticator was successfully authenticated. The
value element of the success tuple, the Authentication State, carries
information about the actual outcome of the authentication attempt; see
MscmpSystAuthn.Types.AuthenticationState.t/0 for more about the
specific information carried by the Authentication State value. Otherwise,
an error tuple is returned indicating the nature of the processing failure.
If the Authentication State's status is returned as :authenticated, the
process of Password Credential recovery may be undertaken. On success the
Recovery Token Authenticator is deleted from the system, but no further action
is taken by this function. The actual process of recovering a password is
external to this function.
The authentication process executed by this function is not interruptible.
The initial call to this function must contain all parameter values required
to fully complete the authentication process. Any missing information will
cause the authentication attempt to be rejected.

 Parameters

	identifier - the identifier defined by the Recovery Token identifier.
Typically this would have been a system generated random string of
characters available at Recovery Token Authenticator creation time.

	plaintext_token - the plaintext Recovery Token credential. Typically
this would have been a system generated random string of characters
available at Recovery Token Authenticator creation time.

	host_address - the apparent origin host IP address from where the
authentication attempt is originating. This value is used in the
enforcement of applicable Network Rules.

	opts - a Keyword List of values that either optionally override default
behaviors of this function or are optionally required. The available
options are:
	owning_owner_id - if the Access Account is an Owned Access Account,
this value must be set to the record ID of the Access Account's Owner.
Otherwise it must be set nil or not provided. The default value is
nil.

	host_ban_rate_limit - overrides the default host IP address based Rate
Limit. The value is set via a tuple in the following form:
{<Maximum Attempts>, <Time Window in Seconds>}. The default value is 30
attempts over a time window of 2 hours.

	identifier_rate_limit - overrides the default identifier based Rate
Limit. The value is set via a tuple in the following form:
{<Maximum Attempts>, <Time Window in Seconds>}. The default value is 5
attempts over a time window of 30 minutes.

	deadline_minutes - overrides the default number of minutes that an
authentication process can take before being rejected for taking too long.
This deadline is needed because an arbitrary time can pass due to user
interaction if the authenticator allows for an interruptable
authentication process. The default deadline allows for 5 minutes to
complete the authentication process.

 Link to this function

 authenticate_validation_token(identifier, plaintext_token, host_address, opts \\ [])

 @spec authenticate_validation_token(
 MscmpSystAuthn.Types.account_identifier(),
 MscmpSystAuthn.Types.credential(),
 MscmpSystNetwork.Types.addr_structs(),
 Keyword.t()
) ::
 {:ok, MscmpSystAuthn.Types.AuthenticationState.t()}
 | {:error, MscmpSystError.t()}

Confirms a specific Access Account Identity record as being valid for use.
The return value of this function is a result tuple where a success tuple
({:ok, <value>}) indicates that the function processed without error, not
that the validation was successful. The value element of the success
tuple, the Authentication State, carries information about the actual outcome
of the authentication attempt; see
MscmpSystAuthn.Types.AuthenticationState.t/0 for more about the
specific information carried by the Authentication State value. Otherwise,
an error tuple is returned indicating the nature of the processing failure.
If the Authentication State's status is returned as :authenticated, the
validation process succeeded. On success the target Identity record has its
validated field set to the current date/time and the Validation
Authenticator is deleted from the system.
The authentication process executed by this function is not interruptible.
The initial call to this function must contain all parameter values required
to fully complete the authentication process. Any missing information will
cause the authentication attempt to be rejected.

 Parameters

	identifier - the identifier defined by the Validation Token identifier.
Typically this would have been a system generated random string of
characters available at Validation Token Authenticator creation time.

	plaintext_token - the plaintext Validation Token credential. Typically
this would have been a system generated random string of characters
available at Validation Token Authenticator creation time.

	host_address - the apparent origin host IP address from where the
authentication attempt is originating. This value is used in the
enforcement of applicable Network Rules.

	opts - a Keyword List of values that either optionally override default
behaviors of this function or are optionally required. The available
options are:
	owning_owner_id - if the Access Account is an Owned Access Account,
this value must be set to the record ID of the Access Account's Owner.
Otherwise it must be set nil or not provided. The default value is
nil.

	host_ban_rate_limit - overrides the default host IP address based Rate
Limit. The value is set via a tuple in the following form:
{<Maximum Attempts>, <Time Window in Seconds>}. The default value is 30
attempts over a time window of 2 hours.

	identifier_rate_limit - overrides the default identifier based Rate
Limit. The value is set via a tuple in the following form:
{<Maximum Attempts>, <Time Window in Seconds>}. The default value is 5
attempts over a time window of 30 minutes.

	deadline_minutes - overrides the default number of minutes that an
authentication process can take before being rejected for taking too long.
This deadline is needed because an arbitrary time can pass due to user
interaction if the authenticator allows for an interruptable
authentication process. The default deadline allows for 5 minutes to
complete the authentication process.

 Account Codes

 Link to this function

 create_or_reset_account_code(access_account_id, opts \\ [])

 @spec create_or_reset_account_code(
 MscmpSystAuthn.Types.access_account_id(),
 Keyword.t()
) ::
 {:ok, MscmpSystAuthn.Types.AuthenticatorResult.t()}
 | {:error, MscmpSystError.t() | Exception.t()}

Creates a new Account Code for an Access Account or resets the Account Code if
is already exists.
On successful Account Code Identity creation or reset, an Authenticator Result
value is returned via a success tuple ({:ok, <result>}). The expected form
of the result for a new Account Code is:
%{
 access_account_id: "c3c7fafd-5c45-11ed-ab46-f3d9be809bf9",
 account_identifier: "QY7QJTWH7MSK"
}
There is no associated Credential or Validator for this Identity Type.

 Parameters

	access_account_id - the record ID of the Access Account that will be
identified by the Account Code Identity.

	opts - a Keyword list of optional settings which can influence the
behavior of the function call. Available options are:
	account_code - this option overrides the randomly generated Account
Code with the value of this option. By default the system randomly
generates the Account Code.

	identity_token_length - overrides the number of characters to randomly
generate for use as the Account Code Identifier. The default value is 12.

	identity_tokens - overrides the character set used to create the
randomly generated Account Code Identifier. The default value is :b32c.
See the MscmpSystUtils.get_random_string/2 documentation for the
tokens parameter which receives this option for more information
regarding valid values for this setting.

 Link to this function

 get_account_code_by_access_account_id(access_account_id)

 @spec get_account_code_by_access_account_id(MscmpSystAuthn.Types.access_account_id()) ::
 {:ok, Msdata.SystIdentities.t() | :not_found} | {:error, MscmpSystError.t()}

Retrieves the Account Code Identity record defined for the requested Access
Account if one exists.
If no Account Code Identity exists for the requested Access Account a tuple in
the form of {:ok, :not_found} is returned.

 Parameters

	access_account_id - the Access Account record ID for which to retrieve
the Account Code Identity.

 Link to this function

 identify_access_account_by_code(account_code, owner_id)

 @spec identify_access_account_by_code(
 MscmpSystAuthn.Types.account_identifier(),
 MscmpSystInstance.Types.owner_id() | nil
) ::
 {:ok, Msdata.SystIdentities.t() | :not_found} | {:error, MscmpSystError.t()}

Identifies an Access Account by its Account Code identifier.
On successful identification, the Account Code Identity record which was found
based on the supplied parameters is returned via a success tuple. If the
function completes successfully but no Identity record is found for the
Identifier a value of {:ok, :not_found} is returned.

 Parameters

	account_code - the Account Code identifier which will identify the
Access Account

	owner_id - if the expected Access Account is an Owned Access Account,
the Owner must be identified. If the Access Account is Unowned, this
parameter should be nil.

 Link to this function

 revoke_account_code(access_account_id)

 @spec revoke_account_code(MscmpSystAuthn.Types.access_account_id()) ::
 {:ok, :deleted | :not_found} | {:error, MscmpSystError.t()}

Revokes a previously create Account Code Identity from an Access Account,
deleting it from the system.
On successful deletion a success tuple in the form {:ok, :deleted} is
returned. If no existing Account Code Identity is found a tuple in this form
{:ok, :not_found} is returned. All other outcomes are error conditions
resulting in the return of an error tuple.

 Parameters

	access_account_id - the Access Account record ID from which to revoke
the Account Code Identity.

 Access Accounts

 Link to this function

 access_account_exists?(opts \\ [])

 @spec access_account_exists?(Keyword.t()) :: boolean() | {:error, MscmpSystError.t()}

Tests to see if a specific Access Account, or any Access Account, record
exists in the database.
The functions provides an optional test on either an Access Account record's
Internal Name or record ID value. If no selectivity option is made, the test
checks if any Access Account records exist in the database at all.
If an appropriate Access Account record is found, the function returns true,
otherwise false. Any other condition is considered an error and will
result in an error tuple being returned indicating the cause of the error.

 Parameters

	opts - an optional Keyword List of optional parameters which can
influence the result of calling the function. The available options are:
	access_account_id - tests if a specific Access Account record exists
as referenced by its record ID value.

	access_account_name - tests if a specific Access Account record exists
as referenced by its Internal Name.

 Examples

Check if any Access Account record exists.
iex> MscmpSystAuthn.access_account_exists?()
true
Check if a specific Access Account record exists.
iex> MscmpSystAuthn.access_account_exists?(access_account_name: "example_accnt")
true
If a non-existent Access Account is requested, the function indicates the record was
not found.
iex> MscmpSystAuthn.access_account_exists?(access_account_name: "nonexistent_access_account")
false

 Link to this function

 create_access_account(access_account_params)

 @spec create_access_account(MscmpSystAuthn.Types.access_account_params()) ::
 {:ok, Msdata.SystAccessAccounts.t()} | {:error, MscmpSystError.t()}

Create a new Access Account.

 Parameters

	access_account_params - a map of required and optional parameters which
define the new Access Account record. Required attributes in this map are:
internal_name, external_name, access_account_state_id, and
allow_global_logins.

 Example

iex> state = MscmpSystEnums.get_default_enum_item("access_account_states")
iex> {:ok, %Msdata.SystAccessAccounts{}} =
...> MscmpSystAuthn.create_access_account(
...> %{
...> internal_name: "example_create_accnt",
...> external_name: "Create Access Account Example",
...> access_account_state_id: state.id,
...> allow_global_logins: true
...> }
...>)

 Link to this function

 get_access_account_by_name(access_account_name)

 @spec get_access_account_by_name(MscmpSystAuthn.Types.access_account_name()) ::
 Msdata.SystAccessAccounts.t() | {:error, MscmpSystError.t()}

Retrieves a fully populated Access Account record as found by internal name.
'Fully populated' in this context means that the related Account Account State
and related functional type data is also retrieved along with the actual
Access Account data.

 Parameters

	access_account_name - the internal name of the Access Account record to
retrieve.

 Example

iex> {
...> :ok,
...> %Msdata.SystAccessAccounts{internal_name: "example_accnt"}
...> } =
...> MscmpSystAuthn.get_access_account_by_name("example_accnt")

 Link to this function

 get_access_account_id_by_name(access_account_name)

 @spec get_access_account_id_by_name(MscmpSystAuthn.Types.access_account_name()) ::
 {:ok, MscmpSystAuthn.Types.access_account_id()} | {:error, MscmpSystError.t()}

Looks up an Access Account record ID by its internal name.

 Parameters

	access_account_name - the internal name of the record for which to
retrieve the record ID.

 Examples

iex> {:ok, access_account_id} =
...> MscmpSystAuthn.get_access_account_id_by_name("example_accnt")
iex> is_binary(access_account_id)
true

 Link to this function

 get_access_account_state_by_name(access_account_state_name)

 @spec get_access_account_state_by_name(
 MscmpSystAuthn.Types.access_account_state_name()
) ::
 Msdata.SystEnumItems.t() | nil

Returns the Access Account State record for the given Internal Name; raises on
error.
On successful execution either the requested Access Account State Enumeration
record is returned or nil if the record does not exist.

 Parameters

	access_account_state_name - the Internal Name of the desire Access Account
State record to return.

 Examples

Finding a Access Account State record by Internal Name.
iex> %Msdata.SystEnumItems{} =
...> MscmpSystAuthn.get_access_account_state_by_name("access_account_states_sysdef_active")
Looking for a non-existent record.
iex> MscmpSystAuthn.get_access_account_state_by_name("nonexistent_type")
nil

 Link to this function

 get_access_account_state_default(functional_type \\ nil)

 @spec get_access_account_state_default(
 MscmpSystAuthn.Types.access_account_state_functional_types()
 | nil
) :: Msdata.SystEnumItems.t()

Returns the Access Account State Enumeration record which is configured as
being default.
If no Access Account State record is configured as default, then nil is
returned.

 Parameters

	functional_type - an optional parameter which, if provided and not
nil, will return the default Access Account State record configured for
the requested functional type rather than the system default Access Account
State. The default for this parameter is to treat the parameter as not
provided (nil).

 Examples

Requesting the system default Access Account State.
iex> %Msdata.SystEnumItems{internal_name: "access_account_states_sysdef_pending"} =
...> MscmpSystAuthn.get_access_account_state_default()
Requesting the default Access Account State for a specific functional type.
iex> %Msdata.SystEnumItems{internal_name: "access_account_states_sysdef_inactive"} =
...> MscmpSystAuthn.get_access_account_state_default(:access_account_states_inactive)

 Link to this function

 purge_access_account(access_account)

 @spec purge_access_account(
 MscmpSystAuthn.Types.access_account_id()
 | Msdata.SystAccessAccounts.t()
) ::
 :ok | {:error, MscmpSystError.t()}

Purges the requested Access Account if the Access Account State is of
a purge eligible functional type.

 Parameters

	access_account - is either the record ID of the Access Account to purge
or the populated Msdata.SystAccessAccounts struct
representing the record to purge.

 Example

iex> {:ok, target_access_account} =
...> MscmpSystAuthn.get_access_account_by_name("example_purge_accnt")
iex> MscmpSystAuthn.purge_access_account(target_access_account)
:ok

 Link to this function

 update_access_account(access_account, access_account_params)

 @spec update_access_account(
 MscmpSystAuthn.Types.access_account_id() | Msdata.SystAccessAccounts.t(),
 MscmpSystAuthn.Types.access_account_params()
) :: {:ok, Msdata.SystAccessAccounts.t()} | {:error, MscmpSystError.t()}

Updates the maintainable fields of a given Access Account record.

 Parameters

	access_account - either the record ID value of the Access Account to
update or is the complete Msdata.SystAccessAccounts
struct representing the before-update state of the Access Account record.

	access_account_params - a map containing those attributes to be changed
along with their new values.

 Example

iex> {:ok, target_access_account} =
...> MscmpSystAuthn.get_access_account_by_name("example_accnt")
iex> {:ok, updated_access_account} =
...> MscmpSystAuthn.update_access_account(
...> target_access_account,
...> %{external_name: "Updated Example Account Name"}
...>)
iex> %Msdata.SystAccessAccounts{
...> external_name: "Updated Example Account Name"
...> } = updated_access_account

 Access Account Instance Assocs

 Link to this function

 accept_instance_invite(access_account_instance_assoc)

 @spec accept_instance_invite(
 MscmpSystAuthn.Types.access_account_instance_assoc_id()
 | Msdata.SystAccessAccountInstanceAssocs.t()
) ::
 {:ok, Msdata.SystAccessAccountInstanceAssocs.t()}
 | {:error, MscmpSystError.t()}

Accepts the invitation made to an Access Account to access an Instance.
This process is only needed in the case where a
syst_access_account_instance_assocs invitation may be accepted or declined
by the Access Account holder. To be accepted in this process the invitation
record must have been previously created (see invite_to_instance/3), must
not be expired, previously declined, or previously accepted; trying to accept
a record in such a state will result in an error tuple being returned.
Naturally, the Access Account holder may choose to never accept or decline the
invitation and may simply allow the invitation to expire.

 Parameters

	access_account_instance_assoc - this value may be either the populated
Msdata.SystAccessAccountInstanceAssocs struct to
accept or the record ID of the record to accept.

 Link to this function

 accept_instance_invite(access_account_id, instance_id)

 @spec accept_instance_invite(
 MscmpSystAuthn.Types.access_account_id(),
 MscmpSystInstance.Types.instance_id()
) ::
 {:ok, Msdata.SystAccessAccountInstanceAssocs.t()}
 | {:error, MscmpSystError.t()}

Accepts the invitation made to an Access Account to access an Instance,
referencing the record by its composite key values.
This function performs the same process as accept_instance_invite/1, but
will look up the record to accept using the Access Account, Instance, and
Credential Type record ID values.

 Parameters

	access_account_id - the record ID of the Access Account accepting the
invitation to the Instance.

	instance_id - the Instance record ID to which the Access Account has
been invited.

 Link to this function

 decline_instance_invite(access_account_instance_assoc)

 @spec decline_instance_invite(
 MscmpSystAuthn.Types.access_account_instance_assoc_id()
 | Msdata.SystAccessAccountInstanceAssocs.t()
) ::
 {:ok, Msdata.SystAccessAccountInstanceAssocs.t()}
 | {:error, MscmpSystError.t()}

Declines an unaccepted/unexpired invitation made to an Access Account to
access an Instance.
This process is only needed in the case where a
syst_access_account_instance_assocs invitation may be accepted or declined
by the Access Account holder. To be declined in this process the invitation
record must have been previously created (see invite_to_instance/3), must
not be expired, previously declined, or previously accepted; trying to decline
a record in such a state will result in an error tuple being returned.
Naturally, the Access Account holder may choose to never accept or decline the
invitation and may simply allow the invitation to expire.

 Parameters

	access_account_instance_assoc - this value may be either the populated
Msdata.SystAccessAccountInstanceAssocs struct to
decline or the record ID of the record to decline.

 Link to this function

 decline_instance_invite(access_account_id, instance_id)

 @spec decline_instance_invite(
 MscmpSystAuthn.Types.access_account_id(),
 MscmpSystInstance.Types.instance_id()
) ::
 {:ok, Msdata.SystAccessAccountInstanceAssocs.t()}
 | {:error, MscmpSystError.t()}

Declines an unaccepted/unexpired invitation made to an Access Account to
access an Instance, referencing the record by its composite key values.
This function performs the same process as decline_instance_invite/1, but
will look up the record to decline using the Access Account, Instance, and
Credential Type record ID values.

 Parameters

	access_account_id - the record ID of the Access Account declining the
invitation to the Instance.

	instance_id - the Instance record ID to which the Access Account has
been invited.

 Link to this function

 invite_to_instance(access_account_id, instance_id, opts \\ [])

 @spec invite_to_instance(
 MscmpSystAuthn.Types.access_account_id(),
 MscmpSystInstance.Types.instance_id(),
 Keyword.t()
) ::
 {:ok, Msdata.SystAccessAccountInstanceAssocs.t()}
 | {:error, MscmpSystError.t()}

Invites or re-invites an Access Account to establish access rights to a
specific Instance.
The invitation process creates a syst_access_account_instance_assocs record
for the requested Access Account and Instance and sets the invitation_issued
field to the current date/time. Re-invitation will update an existing
syst_access_account_instance_assocs record resetting invite data such as the
invitation expiration date or resetting the declined state if the record was
previously declined by the Access Account holder. Once a
syst_access_account_instance_assocs record is accepted, it may not be re-
invited again using this process until the record is revoked (deleted).
syst_access_account_instance_assocs are unique to the Access Account and
Instance combination and only one such record may exist for that combination
at any one time.

 Parameters

	access_account_id - the record ID of the Access Account to invite to the
Instance.

	instance_id - the Instance record ID to which the Access Account is
being invited.

	opts - a keyword list of optional parameters used to set record values
and behaviors. Available options are:
	create_accepted - will create a syst_access_account_instance_assocs
record which is already accepted when set true. The default value is
false.

	expiration_days - for records that are not created as accepted and act
as true invitations, this option sets the number of days in which an
Access Account holder may accept the invitation. After this time the
invitation is considered expired and must be re-invited before it can be
used to grant access again. The default value for this option is 30 days.

 Link to this function

 revoke_instance_access(access_account_instance_assoc)

 @spec revoke_instance_access(
 MscmpSystAuthn.Types.access_account_instance_assoc_id()
 | Msdata.SystAccessAccountInstanceAssocs.t()
) :: :ok | {:error, MscmpSystError.t()}

Revokes the access or invitation to access an Instance from the given Access
Account.
Simply put, Access Accounts are both invited and granted access to Instances
via Access Account Instance Association records (see:
Msdata.SystAccessAccountInstanceAssocs) and this
function deletes those records. This has the effect of revoking the
invitation to access an Instance from the Access Account/Credential Type
combination.
Records in any state of invited, accepted, or declined may be revoked/deleted
using this function.

 Parameters

	access_account_instance_assoc - this value may be either the populated
Msdata.SystAccessAccountInstanceAssocs struct to
revoke or the record ID of the record to revoke.

 Link to this function

 revoke_instance_access(access_account_id, instance_id)

 @spec revoke_instance_access(
 MscmpSystAuthn.Types.access_account_id(),
 MscmpSystInstance.Types.instance_id()
) ::
 {:ok, Msdata.SystAccessAccountInstanceAssocs.t()}
 | {:error, MscmpSystError.t()}

Revokes the access or invitation to access an Instance from the given Access
Account/Credential Type combination, referencing the record by its composite
key values.
This function performs the same action as revoke_instance_access/1 but
identified the record being revoked (deleted) using its composite/candidate
key values.

 Parameters

	access_account_id - the record ID of the Access Account from which the
invitation to access is being revoked.

	instance_id - the Instance record ID from which the Access Account had
previously been invited to access.

 Password Rules

 Link to this function

 create_disallowed_password(password)

 @spec create_disallowed_password(MscmpSystAuthn.Types.credential()) ::
 :ok | {:error, MscmpSystError.t()}

Adds a new password to the Disallowed Passwords list.
Disallowed passwords are passwords that are commonly known, are known to have
been revealed in a successful hacking attack, or are otherwise not available
for users to choose for their authentication credential. Enforcing that these
passwords are not available for use depends upon the effective
disallow_compromised Password Rule for the Access Account attempting
authentication.
An attempt to add a password which is already on the list will succeed as
though the password were not already part of the list.

 Parameters

	password - The plaintext password to add to the list of disallowed
passwords.

 Examples

Adding a password successfully will simply return :ok.
iex> MscmpSystAuthn.create_disallowed_password("Example Disallowed Password")
:ok
Any subsequent attempt to add the same password to the list again will appear
to succeed while silently doing nothing.
iex> MscmpSystAuthn.create_disallowed_password("Example Disallowed Password")
:ok

 Link to this function

 create_owner_password_rules(owner_id, insert_params)

 @spec create_owner_password_rules(
 MscmpSystInstance.Types.owner_id(),
 MscmpSystAuthn.Types.password_rule_params()
) ::
 {:ok, Msdata.SystOwnerPasswordRules.t()}
 | {:error, MscmpSystError.t() | Exception.t()}

Creates Owner Password Rules for the requested Owner.
Owners may optionally define their own Password Rules for their users so long
as their desired rules are of equal or greater stringency than the Global
Password Rules. If the new Owner Password Rules are defined to be less
stringent than the current Global Password Rules, the Owner Password Rules
will be saved as requested, but ignored when applied in favor of the more
stringent rule.

 Parameters

	owner_id - the record ID of the Owner for whom the Password Rules are
being created.

	insert_params - a map of the values to use when creating the new record.
See MscmpSystAuthn.Types.password_rule_params/0 for details
regarding the available attributes.

 Link to this function

 delete_disallowed_password(password)

 @spec delete_disallowed_password(MscmpSystAuthn.Types.credential()) ::
 {:ok, :deleted | :not_found} | {:error, MscmpSystError.t()}

Removes a password from the disallowed passwords list.
On success, this function will return a success tuple indicating if the
requested password was deleted from the disallowed passwords list
({:ok, :deleted}) or if the password simply wasn't found in the list
({:ok, :not_found}).

 Parameters

	password - the plaintext password to delete from the disallowed
passwords list.

 Examples

 Result when deleting a record from the list.
iex> MscmpSystAuthn.delete_disallowed_password("No Longer Disallowed")
{:ok, :deleted}
 Result when trying to delete a record not already on the list.
iex> MscmpSystAuthn.delete_disallowed_password("Not on List")
{:ok, :not_found}

 Link to this function

 delete_owner_password_rules(owner_id)

 @spec delete_owner_password_rules(MscmpSystInstance.Types.owner_id()) ::
 {:ok, :deleted | :not_found} | {:error, MscmpSystError.t() | Exception.t()}

Deletes an Owner Password Rules record from the system.

 Parameters

	owner_id - the Owner record ID whose Password Rules are to be deleted.

 Link to this function

 disallowed_passwords_populated?()

 @spec disallowed_passwords_populated?() :: boolean()

Tests if the Disallowed Password List has any entries or not.
Returns a simple boolean value. If true, there are existing entries in the
Disallowed Passwords Lists; otherwise false is returned.

 Examples

iex> MscmpSystAuthn.disallowed_passwords_populated?()
true

 Link to this function

 get_access_account_password_rule(access_account_id)

 @spec get_access_account_password_rule(MscmpSystAuthn.Types.access_account_id()) ::
 {:ok, MscmpSystAuthn.Types.PasswordRules.t()}
 | {:error, MscmpSystError.t() | Exception.t()}

Retrieves the Password Rules to apply for a requested Access Account as
identified by its record ID.
When evaluating the validity of candidate passwords for a user the system
retrieves the Global Password Rules and then the Access Account Owner Password
Rules, if such Rules have been defined. The system will compare each of the
Rules in the Global and Owner Password Rules with each other and select the
rule which demands the greatest stringency. This process results in a
composite Password Rule which can then be applied to test any candidate
password for validity. This calculated composite Password Rule is what is
returned by this function.
The return value is wrapped in a result tuple, {:ok, <rule>} on success and
{:error, <exception>} in cases of failure.

 Parameters

	access_account_id - the Access Account record ID of the user.

 Link to this function

 get_access_account_password_rule!(access_account_id)

 @spec get_access_account_password_rule!(MscmpSystAuthn.Types.access_account_id()) ::
 MscmpSystAuthn.Types.PasswordRules.t()

Retrieves the Password Rules to apply for a requested Access Account as
identified by its record ID, raising on error.
This function works the same as get_access_account_password_rule/1 except
that any errors cause an exception to be raised.

 Parameters

	access_account_id - the Access Account record ID of the user.

 Link to this function

 get_generic_password_rules(pwd_rules_struct, access_account_id \\ nil)

 @spec get_generic_password_rules(
 Msdata.SystGlobalPasswordRules.t() | Msdata.SystOwnerPasswordRules.t(),
 MscmpSystAuthn.Types.access_account_id() | nil
) :: MscmpSystAuthn.Types.PasswordRules.t() | nil

Converts a Global or Owner Password Rule struct into the generic map based
Password Rule required by some functions.
Msdata.SystGlobalPasswordRules and Msdata.SystOwnerPasswordRules both
define a standard set of known password rules, but do so as different data
types. While this works well for database record management features, testing
and validating actual password rules do not benefit from the distinction.
In these evaluation scenarios it's better to treat the password rule without
consideration of its source. This function returns the generic representation
that certain evaluation features such as test_credential/2 are expecting.

 Link to this function

 get_global_password_rules()

 @spec get_global_password_rules() ::
 {:ok, Msdata.SystGlobalPasswordRules.t()} | {:error, MscmpSystError.t()}

Retrieves the currently active Global Password Rules.
On successful retrieval a success tuple in the form of {:ok, <record>} is
returned where record is a Msdata.SystGlobalPasswordRules
struct. Any exceptions are returned via an error tuple.

 Link to this function

 get_global_password_rules!()

 @spec get_global_password_rules!() :: Msdata.SystGlobalPasswordRules.t()

Retrieves the currently active Global Password Rules, raising on error.
This function works the same as get_global_password_rules/0 except that
any errors cause an exception to be raised.

 Link to this function

 get_owner_password_rules(owner_id)

 @spec get_owner_password_rules(MscmpSystInstance.Types.owner_id()) ::
 {:ok, Msdata.SystOwnerPasswordRules.t()}
 | {:ok, :not_found}
 | {:error, MscmpSystError.t() | Exception.t()}

Retrieves the currently active Owner Password Rules for the requested Owner.
On successful retrieval a success tuple in the form of {:ok, <record>} is
returned where <record> is a populated
Msdata.SystownerPasswordRules struct if Password Rules
for the requested Owner was found or nil otherwise. Any exceptions are
returned via an error tuple.

 Parameters

	owner_id - the Owner record ID for whom to retrieve Password Rules.

 Link to this function

 get_owner_password_rules!(owner_id)

 @spec get_owner_password_rules!(MscmpSystInstance.Types.owner_id()) ::
 Msdata.SystOwnerPasswordRules.t() | :not_found

Retrieves the currently active Owner Password Rules for the requested Owner,
raising on error.
This function works the same as get_owner_password_rules/1 except that
any errors cause an exception to be raised.

 Parameters

	owner_id - the Owner record ID for whom to retrieve Password Rules.

 Link to this function

 load_disallowed_passwords(password_list, opts \\ [])

 @spec load_disallowed_passwords(Enumerable.t(), Keyword.t()) ::
 :ok | {:error, MscmpSystError.t()}

Bulk loads a list of passwords into the Disallowed Passwords database table.
Typically this function will be used to receive a stream of passwords which
should be added to the system Disallowed Passwords list. The passwords
passed to this function are streamed into the PostgreSQL database via a
COPY ms_syst.syst_disallowed_passwords FROM command.
The system Disallowed Password List is stored using SHA-1 hashes of the
disallowed passwords to prevent the casual disclosure of possibly sensitive
information including so called "Personally Identifiable Information" (PII).
If passwords to this function are provided via plain text this function will
convert them to the expected SHA-1 representation.

 Parameters

	password_list - A required Enumerable of passwords to disallow. The
passwords in this list are accepted in one of two possible formats: simple
plain text passwords or as sha1 hashes represented using PostgreSQL's bytea
textual export format (e.g. "example_pg_disallowed" =
"\x32dc749fd3ef7bcf79d125a3f9146c0f122f8763"). Which is expected depends
on the pg_format option described below.

Plain Text Processing Tip
If the password_list is using the plain text representation, some
sources, such as File.stream!/3 may add an extraneous newline (or
similar) to the password which must be stripped prior to passing to this
function. Failing to do so will result in incorrect hashing and the
requested passwords will not be effectively disallowed.

	options - An optional Keyword List of settings with which the caller can
influence the behavior of this function. The available options are:
	pg_format - a boolean value which indicates the format that the source
passwords are being provided in. If true, the passwords to disallow are
expected to be already be SHA-1 hashed and represented using PostgreSQL's
bytea textual representation; if false, the passwords are assumed to be
represented using simple plain text which will be transformed as needed by
this function. The default value of this parameter is false for plain
text processing.

	timeout - an integer representing the number of milliseconds that the
database transaction processing the load operation will wait prior to
timing out with an error. Bulk loading is assumed to be used in cases
where a substantial amount of data might be processed; certainly enough
data to possibly exceed the system default database transaction timeout.
As such it is recommend to be sure the timeout here is fit for the data
requirements expected for any given call. The default value is 300,000
milliseconds (5 minutes).

 Examples

Loading the Disallowed Passwords List using a file listing plain text
passwords.
iex> MscmpSystAuthn.password_disallowed?("example_plain_disallowed")
false
iex> Path.join(["database", "example_plain_disallowed_passwords.txt"])
...> |> File.stream!()
...> |> Stream.map(&String.trim_trailing(&1, "\n"))
...> |> MscmpSystAuthn.load_disallowed_passwords()
:ok
iex> MscmpSystAuthn.password_disallowed?("example_plain_disallowed")
true
Loading the Disallowed Passwords List using a file already formatted for
direct loading into PostgreSQL.
iex> MscmpSystAuthn.password_disallowed?("example_pg_disallowed")
false
iex> Path.join(["database", "example_pg_disallowed_passwords.txt"])
...> |> File.stream!()
...> |> MscmpSystAuthn.load_disallowed_passwords(pg_format: true)
:ok
iex> MscmpSystAuthn.password_disallowed?("example_pg_disallowed")
true

 Link to this function

 password_disallowed(password)

 @spec password_disallowed(MscmpSystAuthn.Types.credential()) ::
 {:ok, boolean()} | {:error, MscmpSystError.t()}

Indicates whether the requested password is disallowed.
This function returns a tuple in the form of {:ok, <disallowed>} where the
disallowed value is either true meaning that the requested password is
disallowed or false if the password is available for use.
Regardless of the return of this function, disallowed passwords are only
prevented for use if the effective disallow_compromised Password Rule for
the Access Account attempting authentication is set.

 Parameters

	password - the plaintext password to test for disallowed status.

 Examples

 When a password has been previously disallowed and cannot be used as a
 user credential.
iex> MscmpSystAuthn.password_disallowed("Is Disallowed")
{:ok, true}
 When a password has not been previously disallowed.
iex> MscmpSystAuthn.password_disallowed("Is Not Disallowed")
{:ok, false}

 Link to this function

 password_disallowed?(password)

 @spec password_disallowed?(MscmpSystAuthn.Types.credential()) :: boolean()

Indicates whether the requested password is disallowed, raising on error.
This function works the same as disallowed_password/1 except this function
returns a simple boolean value rather than a result tuple. If an error is
encountered an exception is raised.

 Parameters

	password - the plaintext password to test for disallowed status.

 Examples

 When a password has been previously disallowed and cannot be used as a
 user credential.
iex> MscmpSystAuthn.password_disallowed?("Is Disallowed")
true
 When a password has not been previously disallowed.
iex> MscmpSystAuthn.password_disallowed?("Is Not Disallowed")
false

 Link to this function

 test_credential(pwd_rules_or_access_account_id, plaintext_pwd)

 @spec test_credential(
 MscmpSystAuthn.Types.access_account_id()
 | MscmpSystAuthn.Types.PasswordRules.t(),
 MscmpSystAuthn.Types.credential()
) ::
 {:ok, Keyword.t(MscmpSystAuthn.Types.password_rule_violations())}
 | {:error, MscmpSystError.t() | Exception.t()}

Tests a candidate password against the effective Password Rules for a given
Access Account.
Prior to attempting to save a Password Credential, it should be tested for
compliance with the Global Password Rules and any Owner Password Rules that
exist for the Owner of the Access Account. This function performs that test
and will return all of the violations detected. If no issues are detected,
a success tuple with a value of empty list will be returned ({:ok, []}).
Note that this function is recommended to run prior to attempting to save a
Password Credential, but is not required. Any function which can save a new
password to the database will independently test the candidate password
against the effective Password Rules prior to saving the Credential, erroring
on any invalid password.

 Parameters

	access_account_id - the record ID of the Access Account for whom to
perform the test. The applicable Password Rules may derive from the
Access Account Owner if the Access Account is in fact owned.

	plaintext_pwd - the candidate Password to test against the rules.

 Examples

 A successful password test.
iex> {:ok, access_account_id} =
...> MscmpSystAuthn.get_access_account_id_by_name("example_accnt")
iex> MscmpSystAuthn.test_credential(access_account_id, "A Passing Password.")
{:ok, []}
 An invalid password test.
iex> {:ok, access_account_id} =
...> MscmpSystAuthn.get_access_account_id_by_name("example_accnt")
iex> MscmpSystAuthn.test_credential(access_account_id, "short")
{:ok, [password_rule_length_min: 8]}

 Link to this function

 update_global_password_rules(update_params)

 @spec update_global_password_rules(MscmpSystAuthn.Types.password_rule_params()) ::
 {:ok, Msdata.SystGlobalPasswordRules.t()}
 | {:error, MscmpSystError.t() | Exception.t()}

Updates the Global Password Rules with new values.
The Global Password Rules are created at system installation time with a
default and recommended set of values, but these values may be customized as
desired any time after installation.
Note that the original Global Password Rules data will be retrieved for use in
the update process and that no Ecto optimistic locking will be employed with
this update.

 Parameters

	update_params - a map of the values to use when updating the Global
Password Rules record. See
MscmpSystAuthn.Types.password_rule_params/0 for details
regarding the available attributes.

 Link to this function

 update_global_password_rules(global_password_rules, update_params)

 @spec update_global_password_rules(
 Msdata.SystGlobalPasswordRules.t(),
 MscmpSystAuthn.Types.password_rule_params()
) ::
 {:ok, Msdata.SystGlobalPasswordRules.t()}
 | {:error, MscmpSystError.t() | Exception.t()}

Updates the Global Password Rules with new values using a caller provided
data source record.
This function works the same as described in create_update_global_password_rules/1
except that in this version the caller must also provide a source
data struct to act as the basis of the update. Ecto optimistic locking will
be applied to the update process.

 Parameters

	global_password_rules - a fully populated
Msdata.SystGlobalPasswordRules record representing
the state of the Global Password Rules prior to the change.

	update_params - a map of the values to use when updating the Global
Password Rules record. See
MscmpSystAuthn.Types.password_rule_params/0 for details
regarding the available attributes.

 Link to this function

 update_owner_password_rules(owner, update_params)

 @spec update_owner_password_rules(
 MscmpSystInstance.Types.owner_id() | Msdata.SystOwnerPasswordRules.t(),
 MscmpSystAuthn.Types.password_rule_params()
) ::
 {:ok, Msdata.SystOwnerPasswordRules.t()}
 | {:error, MscmpSystError.t() | Exception.t()}

Updates the Owner Password Rules with new values.
After creation, Owner Password Rules may be updated with new values as might
meet the specific needs of the Owner.

 Parameters

	owner - the record ID of the Owner for whom the Password Rules are
being updated or the fully populated data struct representing the current
Owner Password Rules. Note that if the data struct is provided Ecto
optimistic locking will be in effect.

	update_params - a map of the values to use when updating the Owner
Password Rules record. See
MscmpSystAuthn.Types.password_rule_params/0 for details
regarding the available attributes.

 Link to this function

 verify_password_rules(test_rules, standard_rules \\ nil)

 @spec verify_password_rules(
 MscmpSystAuthn.Types.PasswordRules.t(),
 Msdata.SystGlobalPasswordRules.t()
 | MscmpSystAuthn.Types.PasswordRules.t()
 | nil
) ::
 {:ok, Keyword.t(MscmpSystAuthn.Types.password_rule_violations())}
 | {:error, MscmpSystError.t() | Exception.t()}

Compares a "Test" set of Password Rules against a "Standard" set of Password
Rules and reports on which of the "Test" Rules are considered less stringent
than the "Standard" Rules.
The primary use case for this function is to test how Owner Password Rules
("Test" Rules) compare against the Global Password Rules ("Standard" Rules),
but the function can compare any two rules.
The return value of this function is wrapped in a result tuple. A result of
{:ok, <rule violations>} is returned on success and an error tuple in the
form of {:error, <exception>} is returned on error. The <rule violations>
value is a Keyword List where each tuple's key represents the rule violated
and the tuple's value is the required value for that rule; whether the
required value is a minimum or maximum depends on the nature of the specific
rule being reported.

 Parameters

	test_rules - a Password Rule which will be tested against the value
of the standard_rules. Where the test_rules are less stringent than the
standard_rules, a violation is reported in the result.

	standard_rules - the "Standard" against which the test_rules are
judged. This parameter is optional and when nil the Global Password
Rule is retrieved and used as the default "Standard" Rules. Otherwise
either a generic MscmpSystAuthn.Types.PasswordRules.t/0 value
or a populated Msdata.SystGlobalPasswordRules data
struct may be provided.

 Link to this function

 verify_password_rules!(test_rules, standard_rules \\ nil)

 @spec verify_password_rules!(
 MscmpSystAuthn.Types.PasswordRules.t(),
 Msdata.SystGlobalPasswordRules.t()
 | MscmpSystAuthn.Types.PasswordRules.t()
 | nil
) :: Keyword.t(MscmpSystAuthn.Types.password_rule_violations())

Compares a "Test" set of Password Rules against a "Standard" set of Password
Rules and reports on which of the "Test" Rules are considered less stringent
than the "Standard" Rules, raising on error.
This function works the same as verify_password_rules/2 except that any
errors cause an exception to be raised.

 Parameters

	test_rules - a Password Rule which will be tested against the value
of the standard_rules. Where the test_rules are less stringent than the
standard_rules, a violation is reported in the result.

	standard_rules - the "Standard" against which the test_rules are
judged. This parameter is optional and when nil the Global Password
Rule is retrieved and used as the default "Standard" Rules. Otherwise
either a generic MscmpSystAuthn.Types.PasswordRules.t/0 value
or a populated Msdata.SystGlobalPasswordRules data
struct may be provided.

 Network Rules

 Link to this function

 create_disallowed_host(host_address)

 @spec create_disallowed_host(MscmpSystAuthn.Types.host_address()) ::
 {:ok, Msdata.SystDisallowedHosts.t()} | {:error, MscmpSystError.t()}

Adds a host IP address to the global disallowed hosts list.
Disallowed hosts are IP addresses which are prevented from authenticating
users with the system, and by extension prevents host access to application
functions generally. Hosts are disallowed on a global basis and may be added
to the list based on system heuristics which detect suspicious activity.
Successfully adding a host to the list returns a success tuple and a struct
representing the record just created. Attempting to add a host which is
already part of the list will also result in a success tuple, but no record is
returned.

 Parameters

	host_address - the IP address of the host to disallow.

 Examples

 Adding a new host to the list.
iex> import MscmpSystNetwork, only: [sigil_i: 2]
iex> {:ok, false} = MscmpSystAuthn.host_disallowed(~i"10.123.123.20")
iex> {:ok, %Msdata.SystDisallowedHosts{}} =
...> MscmpSystAuthn.create_disallowed_host(~i"10.123.123.20")
 Attempting to add a host already on the list.
iex> import MscmpSystNetwork, only: [sigil_i: 2]
iex> {:ok, true} = MscmpSystAuthn.host_disallowed(~i"10.123.123.3")
iex> {:ok, nil} =
...> MscmpSystAuthn.create_disallowed_host(~i"10.123.123.3")

 Link to this function

 create_global_network_rule(insert_params)

 @spec create_global_network_rule(MscmpSystAuthn.Types.global_network_rule_params()) ::
 {:ok, Msdata.SystGlobalNetworkRules.t()} | {:error, MscmpSystError.t()}

Creates a new Global Network Rule using the provided parameters.
Global Network Rules are checked prior to all attempted user authentication
events and have precedence over Owner and Instance Network Rules, though they
are secondary to the Disallowed Hosts list.
On successful creation, a result tuple in the form {:ok, <new record>} is
returned where the <new record> is the fully populated Data struct of the
record just created. If an exception is raised this function will return a
failure tuple in the form of {:error, <exception data>}.

 Parameters

	insert_params - a map representing the values to use when creating the
new Global Network Rule. See
MscmpSystAuthn.Types.global_network_rule_params/0 for the
available attributes.

 Example

 Adding a new "Allow" Global Network Rule for a CIDR network.
iex> import MscmpSystNetwork, only: [sigil_i: 2]
iex> new_global_rule = %{
...> ordering: 20,
...> functional_type: :allow,
...> ip_host_or_network: ~i"10.100.150.0/24"
...> }
iex> {:ok, %Msdata.SystGlobalNetworkRules{}} =
...> MscmpSystAuthn.create_global_network_rule(new_global_rule)
 Adding a new "Deny" Global Network Rule for an IP Address range.
iex> import MscmpSystNetwork, only: [sigil_i: 2]
iex> new_global_rule = %{
...> ordering: 21,
...> functional_type: :deny,
...> ip_host_or_network: nil,
...> ip_host_range_lower: ~i"10.100.151.1",
...> ip_host_range_upper: ~i"10.100.152.254"
...> }
iex> {:ok, %Msdata.SystGlobalNetworkRules{}} =
...> MscmpSystAuthn.create_global_network_rule(new_global_rule)

 Link to this function

 create_instance_network_rule(instance_id, insert_params)

 @spec create_instance_network_rule(
 MscmpSystInstance.Types.instance_id(),
 MscmpSystAuthn.Types.instance_network_rule_params()
) :: {:ok, Msdata.SystInstanceNetworkRules.t()} | {:error, MscmpSystError.t()}

Creates a new Instance Network Rule using the provided parameters.
Instance Network Rules the checked after the Disallowed Hosts list, the Global
Network Rules, and the Instance Network Rules and apply to all Instances owned
by the specified Instance, unless a higher precedence rule already applies to the
host.
On successful creation, a result tuple in the form {:ok, <new record>} is
returned where the <new record> is the fully populated Data struct of the
record just created. If an exception is raised this function will return a
failure tuple in the form of {:error, <exception data>}.

 Parameters

	instance_id - the record ID of the Instance for whom the Instance Network Rule is
being created.

	insert_params - a map representing the values to use when creating the
new Instance Network Rule. See
MscmpSystAuthn.Types.instance_network_rule_params/0 for the
available attributes.

 Example

 Adding a new "Allow" Instance Network Rule for a CIDR network.
iex> import MscmpSystNetwork, only: [sigil_i: 2]
iex> {:ok, instance_id} =
...> MscmpSystInstance.get_instance_id_by_name("app1_owner1_instance_types_std")
iex> new_instance_rule = %{
...> ordering: 1,
...> functional_type: :allow,
...> ip_host_or_network: ~i"10.100.170.0/24"
...> }
iex> {:ok, %Msdata.SystInstanceNetworkRules{}} =
...> MscmpSystAuthn.create_instance_network_rule(instance_id, new_instance_rule)
 Adding a new "Deny" Instance Network Rule for an IP Address range.
iex> import MscmpSystNetwork, only: [sigil_i: 2]
iex> {:ok, instance_id} =
...> MscmpSystInstance.get_instance_id_by_name("app1_owner1_instance_types_std")
iex> new_instance_rule = %{
...> ordering: 2,
...> functional_type: :deny,
...> ip_host_or_network: nil,
...> ip_host_range_lower: ~i"10.100.171.1",
...> ip_host_range_upper: ~i"10.100.172.254"
...> }
iex> {:ok, %Msdata.SystInstanceNetworkRules{}} =
...> MscmpSystAuthn.create_instance_network_rule(instance_id, new_instance_rule)

 Link to this function

 create_owner_network_rule(owner_id, insert_params)

 @spec create_owner_network_rule(
 MscmpSystInstance.Types.owner_id(),
 MscmpSystAuthn.Types.owner_network_rule_params()
) :: {:ok, Msdata.SystOwnerNetworkRules.t()} | {:error, MscmpSystError.t()}

Creates a new Owner Network Rule using the provided parameters.
Owner Network Rules the checked after the Disallowed Hosts list, the Global
Network Rules, and the Instance Network Rules and apply to all Instances owned
by the specified Owner, unless a higher precedence rule already applies to the
host.
On successful creation, a result tuple in the form {:ok, <new record>} is
returned where the <new record> is the fully populated Data struct of the
record just created. If an exception is raised this function will return a
failure tuple in the form of {:error, <exception data>}.

 Parameters

	owner_id - the record ID of the Owner for whom the Owner Network Rule is
being created.

	insert_params - a map representing the values to use when creating the
new Owner Network Rule. See
MscmpSystAuthn.Types.owner_network_rule_params/0 for the
available attributes.

 Example

 Adding a new "Allow" Owner Network Rule for a CIDR network.
iex> import MscmpSystNetwork, only: [sigil_i: 2]
iex> {:ok, owner_id} = MscmpSystInstance.get_owner_id_by_name("owner1")
iex> new_owner_rule = %{
...> ordering: 1,
...> functional_type: :allow,
...> ip_host_or_network: ~i"10.100.160.0/24"
...> }
iex> {:ok, %Msdata.SystOwnerNetworkRules{}} =
...> MscmpSystAuthn.create_owner_network_rule(owner_id, new_owner_rule)
 Adding a new "Deny" Owner Network Rule for an IP Address range.
iex> import MscmpSystNetwork, only: [sigil_i: 2]
iex> {:ok, owner_id} = MscmpSystInstance.get_owner_id_by_name("owner1")
iex> new_owner_rule = %{
...> ordering: 2,
...> functional_type: :deny,
...> ip_host_or_network: nil,
...> ip_host_range_lower: ~i"10.100.161.1",
...> ip_host_range_upper: ~i"10.100.162.254"
...> }
iex> {:ok, %Msdata.SystOwnerNetworkRules{}} =
...> MscmpSystAuthn.create_owner_network_rule(owner_id, new_owner_rule)

 Link to this function

 delete_disallowed_host(disallowed_host)

 @spec delete_disallowed_host(
 MscmpSystAuthn.Types.disallowed_host_id()
 | Msdata.SystDisallowedHosts.t()
) ::
 {:ok, :deleted | :not_found} | {:error, MscmpSystError.t()}

Deletes a host IP address from the Disallowed Hosts list based on either a
Msdata.SystDisallowedHosts record or the ID of such a
record.
If the record is found and deleted a success tuple in the form {:ok, :deleted}
is returned. If the record is not found the success tuple {:ok, :not_found}
is returned.
Once a host is removed from the Disallowed Hosts list, users are allowed to
authenticate from the host, so long as no other effective Network Rule
prevents the action.

 Parameters

	disallowed_host - either the fully populated
Msdata.SystDisallowedHosts data struct for the
record to delete or the ID of the record. Note that when the data struct
is provided Ecto optimistic locking is applied to the the delete operation.

 Examples

 Deleting a host by record ID.
iex> import MscmpSystNetwork, only: [sigil_i: 2]
iex> {:ok, target_host_record} =
...> MscmpSystAuthn.get_disallowed_host_record_by_host(~i"10.10.250.4")
iex> MscmpSystAuthn.delete_disallowed_host(target_host_record.id)
{:ok, :deleted}
 Deleting a host by record struct.
iex> import MscmpSystNetwork, only: [sigil_i: 2]
iex> {:ok, target_host_record} =
...> MscmpSystAuthn.get_disallowed_host_record_by_host(~i"10.10.250.5")
iex> MscmpSystAuthn.delete_disallowed_host(target_host_record)
{:ok, :deleted}
 Deleting a struct for a no longer existent record.
iex> import MscmpSystNetwork, only: [sigil_i: 2]
iex> {:ok, target_host_record} =
...> MscmpSystAuthn.get_disallowed_host_record_by_host(~i"10.10.250.6")
iex> MscmpSystAuthn.delete_disallowed_host(target_host_record)
{:ok, :deleted}
iex> MscmpSystAuthn.delete_disallowed_host(target_host_record)
{:ok, :not_found}

 Link to this function

 delete_disallowed_host_addr(host_addr)

 @spec delete_disallowed_host_addr(MscmpSystAuthn.Types.host_address()) ::
 {:ok, :deleted | :not_found} | {:error, MscmpSystError.t()}

Deletes a host IP address from the Disallowed Hosts list as looked up by the
host IP address.
If the record is found and deleted a success tuple in the form {:ok, :deleted}
is returned. If the record is not found the success tuple {:ok, :not_found}
is returned. Any other condition would cause an error tuple to be returned.
Once a host is removed from the Disallowed Hosts list, users are allowed to
authenticate from the host, so long as no other effective Network Rule
prevents the action.

 Parameters

	host_addr - the IP address of the host that is no longer to be
disallowed.

 Examples

 Deleting a host that does exist in the list.
iex> import MscmpSystNetwork, only: [sigil_i: 2]
iex> {:ok, true} = MscmpSystAuthn.host_disallowed(~i"10.10.251.1")
iex> {:ok, :deleted} =
...> MscmpSystAuthn.delete_disallowed_host_addr(~i"10.10.251.1")
iex> {:ok, false} = MscmpSystAuthn.host_disallowed(~i"10.10.251.1")
 Attempting to delete a host not already on the list.
iex> import MscmpSystNetwork, only: [sigil_i: 2]
iex> {:ok, false} = MscmpSystAuthn.host_disallowed(~i"10.10.251.10")
iex> {:ok, :not_found} =
...> MscmpSystAuthn.delete_disallowed_host_addr(~i"10.10.251.10")

 Link to this function

 delete_global_network_rule(global_network_rule_id)

 @spec delete_global_network_rule(Ecto.UUID.t()) ::
 :ok | {:error, MscmpSystError.t() | Exception.t()}

Deletes an existing Global Network Rule record as referenced by the record ID.
On successful deletion, a simple result of :ok is returned. On error, an
error tuple in the form of {:error, <exception>} is returned.

 Parameters

	global_network_rule_id - The record ID of the Global Network Rule record
to delete.

 Link to this function

 delete_instance_network_rule(instance_network_rule_id)

 @spec delete_instance_network_rule(Ecto.UUID.t()) ::
 :ok | {:error, MscmpSystError.t() | Exception.t()}

Deletes an existing Instance Network Rule record as referenced by the record
ID.
On successful deletion, a simple result of :ok is returned. On error, an
error tuple in the form of {:error, <exception>} is returned.

 Parameters

	instance_network_rule_id - The record ID of the Instance Network Rule
record to delete.

 Link to this function

 delete_owner_network_rule(owner_network_rule_id)

 @spec delete_owner_network_rule(Ecto.UUID.t()) ::
 :ok | {:error, MscmpSystError.t() | Exception.t()}

Deletes an existing Owner Network Rule record as referenced by the record ID.
On successful deletion, a simple result of :ok is returned. On error, an
error tuple in the form of {:error, <exception>} is returned.

 Parameters

	owner_network_rule_id - The record ID of the Owner Network Rule record
to delete.

 Link to this function

 get_applied_network_rule(host_address, instance_id \\ nil, instance_owner_id \\ nil)

 @spec get_applied_network_rule(
 MscmpSystAuthn.Types.host_address(),
 MscmpSystInstance.Types.instance_id() | nil,
 MscmpSystInstance.Types.owner_id() | nil
) ::
 {:ok, MscmpSystAuthn.Types.AppliedNetworkRule.t()}
 | {:error, MscmpSystError.t() | Exception.t()}

Returns the Network Rule which should be applied for the given Host IP Address.
This function compares the provided Host IP Address against the applicable
Network Rules which apply to it and return the specific rule which should be
applied during the authentication process.

 Network Rule Precedence

The specific rules to check for applicability depends on the other provided
parameters. The available Network Rule sets in order of precedence are:
	Disallowed Hosts: Globally disallowed hosts are always checked first and
no later rule can override the denial. Only removing the host from the
Disallowed Hosts List can reverse this denial.

	Global Network Rules: These are rules applied to all presented Host IP
Addresses.

	Instance Network Rules: Rules defined by Instance Owners and are the
most granular rule level available. These Network Rules are only evaluated
if the instance_id parameter is provided.

	Owner Network Rules: Network Rules which are applicable to all
Instances of a given Owner, provided no superseding Instance Network Rule
was found. This rule set is included if either the instance_id or
owner_id parameter is provided.

	Default Network Rule: When no explicitly defined Network Rule has
been found for a host, this rule will apply implicitly. The current rule
grants access from any host.

 Return Value

 This function returns a result tuple. The value element of the result tuple
 is a map of type MscmpSystAuthn.Types.AppliedNetworkRule.t/0.
 The map indicates which precedence group the rule came from, the ID of the
 Network Rule record if the rule was derived from the various Network Rule
 data tables, and the Functional Type of the rule: :allow meaning the
 rule explicitly allows the host to attempt an authentication, or :deny
 indicating that the host is not allowed to attempt authentication.

 Parameters

	host_address - the Host IP Address which the user wishes to authenticate
from.

	instance_id - the record ID of an Instance to which the user wants to
gain access. This parameter is optional, though excluding this parameter
will leave the Instance Network Rules might properly apply unevaluated. If
this parameter is provided, the Owner of the Instance is implied and there
is no need to also supply the owner_id parameter.

	owner_id - the record ID of an Owner which owns the candidate Instances
to which the user wishes to authenticate. This parameter is not required if
the instance_id parameter has been provided. Otherwise, this parameter is
optional, though if the Owner has not been resolved through this parameter
or via the instance_id, the Owner Network Rules that might apply to the
authentication attempt will not be applied.

 Examples

 When the host is a member of the Disallowed Hosts lists.
iex> import MscmpSystNetwork, only: [sigil_i: 2]
iex> {:ok,
...> %MscmpSystAuthn.Types.AppliedNetworkRule{
...> functional_type: :deny, network_rule_id: id, precedence: :disallowed
...> }
...> } = MscmpSystAuthn.get_applied_network_rule(~i"10.123.123.3")
iex> is_binary(id)
true
 When the Host IP Address does not match any explicitly defined rule and the
 implicit rule applies.
iex> import MscmpSystNetwork, only: [sigil_i: 2]
iex> MscmpSystAuthn.get_applied_network_rule(~i"10.124.124.3")
{:ok,
 %MscmpSystAuthn.Types.AppliedNetworkRule{
 functional_type: :allow, network_rule_id: nil, precedence: :implied
 }
}
 When a Global Network Rule explicitly allows the Host IP Address to attempt
 authentication.
iex> import MscmpSystNetwork, only: [sigil_i: 2]
iex> {:ok,
...> %MscmpSystAuthn.Types.AppliedNetworkRule{
...> functional_type: :allow, network_rule_id: id, precedence: :global
...> }
...> } = MscmpSystAuthn.get_applied_network_rule(~i"10.125.125.3")
iex> is_binary(id)
true
 Note that while the examples did not include Instance or Owner IDs, the
 examples are none-the-less representative of cases where they are included.

 Link to this function

 get_applied_network_rule!(host_address, instance_id \\ nil, instance_owner_id \\ nil)

 @spec get_applied_network_rule!(
 MscmpSystAuthn.Types.host_address(),
 MscmpSystInstance.Types.instance_id() | nil,
 MscmpSystInstance.Types.owner_id() | nil
) :: MscmpSystAuthn.Types.AppliedNetworkRule.t()

Returns the Network Rule which should be applied for the given Host IP
Address, raising on error.
This function works the same as get_applied_network_rule/3 except this
function returns its result without wrapping it in a result tuple. If an
error is encountered an exception is raised.

 Parameters

	host_address - the Host IP Address which the user wishes to authenticate
from.

	instance_id - the record ID of an Instance to which the user wants to
gain access. This parameter is optional, though excluding this parameter
will leave the Instance Network Rules might properly apply unevaluated. If
this parameter is provided, the Owner of the Instance is implied and there
is no need to also supply the owner_id parameter.

	owner_id - the record ID of an Owner which owns the candidate Instances
to which the user wishes to authenticate. This parameter is not required if
the instance_id parameter has been provided. Otherwise, this parameter is
optional, though if the Owner has not been resolved through this parameter
or via the instance_id, the Owner Network Rules that might apply to the
authentication attempt will not be applied.

 Examples

 When the host is a member of the Disallowed Hosts lists.
iex> import MscmpSystNetwork, only: [sigil_i: 2]
iex> %MscmpSystAuthn.Types.AppliedNetworkRule{
...> functional_type: :deny, network_rule_id: id, precedence: :disallowed
...> } = MscmpSystAuthn.get_applied_network_rule!(~i"10.123.123.3")
iex> is_binary(id)
true
 When the Host IP Address does not match any explicitly defined rule and the
 implicit rule applies.
iex> import MscmpSystNetwork, only: [sigil_i: 2]
iex> MscmpSystAuthn.get_applied_network_rule!(~i"10.124.124.3")
%MscmpSystAuthn.Types.AppliedNetworkRule{
 functional_type: :allow, network_rule_id: nil, precedence: :implied
}
 When a Global Network Rule explicitly allows the Host IP Address to attempt
 authentication.
iex> import MscmpSystNetwork, only: [sigil_i: 2]
iex> %MscmpSystAuthn.Types.AppliedNetworkRule{
...> functional_type: :allow, network_rule_id: id, precedence: :global
...> } = MscmpSystAuthn.get_applied_network_rule!(~i"10.125.125.3")
iex> is_binary(id)
true
 Note that while the examples did not include Instance or Owner IDs, the
 examples are none-the-less representative of cases where they are included.

 Link to this function

 get_disallowed_host_record_by_host(host_addr)

 @spec get_disallowed_host_record_by_host(MscmpSystAuthn.Types.host_address()) ::
 {:ok, Msdata.SystDisallowedHosts.t() | nil} | {:error, MscmpSystError.t()}

Retrieves a Disallowed Host record from the database as identified by its host
address.

 Parameters

	host_address - the IP address of the disallowed host record to retrieve.

 Example

 Retrieving a Disallowed Host record by IP address.
iex> import MscmpSystNetwork, only: [sigil_i: 2]
iex> {:ok, %Msdata.SystDisallowedHosts{}} =
...> MscmpSystAuthn.get_disallowed_host_record_by_host(~i"10.123.123.4")
 Attempting to retrieve a record for a host not on the list.
iex> import MscmpSystNetwork, only: [sigil_i: 2]
iex> MscmpSystAuthn.get_disallowed_host_record_by_host(~i"10.125.120.20")
{:ok, nil}

 Link to this function

 get_disallowed_host_record_by_host!(host_addr)

 @spec get_disallowed_host_record_by_host!(MscmpSystAuthn.Types.host_address()) ::
 Msdata.SystDisallowedHosts.t() | nil

Retrieves a Disallowed Host record from the database as identified by its host
address, raising on error.
This function works the same as get_disallowed_host_record_by_host/1 except
this function returns its result without wrapping it in a result tuple. If an
error is encountered an exception is raised.

 Parameters

	host_address - the IP address of the disallowed host record to retrieve.

 Example

 Retrieving a Disallowed Host record by IP address.
iex> import MscmpSystNetwork, only: [sigil_i: 2]
iex> %Msdata.SystDisallowedHosts{} =
...> MscmpSystAuthn.get_disallowed_host_record_by_host!(~i"10.123.123.4")
 Attempting to retrieve a record for a host not on the list.
iex> import MscmpSystNetwork, only: [sigil_i: 2]
iex> MscmpSystAuthn.get_disallowed_host_record_by_host!(~i"10.125.120.20")
nil

 Link to this function

 get_disallowed_host_record_by_id(disallowed_host_id)

 @spec get_disallowed_host_record_by_id(MscmpSystAuthn.Types.disallowed_host_id()) ::
 {:ok, Msdata.SystDisallowedHosts.t()}
 | {:error, MscmpSystError.t() | Exception.t()}

Retrieves a Disallowed Host record by the record ID.
This function assumes the record exists. If the record does not exist an
error tuple will be returned.

 Parameters

	disallowed_host_id - the record ID of the Disallowed Host record to retrieve.

 Example

 Retrieving a Disallowed Host record by record ID.
 {:ok, %Msdata.SystDisallowedHosts{}} =
 MscmpSystAuthn.get_disallowed_host_record_by_id(
 "ad7f2030-5895-11ed-a888-0f8a20e745a9")

 Link to this function

 get_disallowed_host_record_by_id!(disallowed_host_id)

 @spec get_disallowed_host_record_by_id!(MscmpSystAuthn.Types.disallowed_host_id()) ::
 Msdata.SystDisallowedHosts.t()

Retrieves a Disallowed Host record by the record ID, raising on error.
This function works the same as get_disallowed_host_record_by_id/1 except
this function returns its result without wrapping it in a result tuple. If an
error is encountered, including if the record does not exist, an exception is
raised.

 Parameters

	disallowed_host_id - the record ID of the Disallowed Host record to retrieve.

 Example

 Retrieving a Disallowed Host record by record ID.
 %Msdata.SystDisallowedHosts{} =
 MscmpSystAuthn.get_disallowed_host_record_by_id!(
 "ad7f2030-5895-11ed-a888-0f8a20e745a9")

 Link to this function

 get_global_network_rule(global_network_rule_id)

 @spec get_global_network_rule(Ecto.UUID.t()) ::
 {:ok, Msdata.SystGlobalNetworkRules.t()}
 | {:ok, :not_found}
 | {:error, MscmpSystError.t() | Exception.t()}

Retrieves a Global Network Rule record based on its record ID.
For a given Global Network Rule record ID this function will return a result
tuple in the form of {:ok, <record>} where <record> is the fully
populated Msdata.SystGlobalNetworkRules. If the
record does not exist, then {:ok, :not_found} is returned. Otherwise, an
error tuple in the form of {:error, <exception>} is returned.

 Parameters

	global_network_rule_id - the record ID of the desired Global Network Rule
record.

 Link to this function

 get_global_network_rule!(global_network_rule_id)

 @spec get_global_network_rule!(Ecto.UUID.t()) ::
 Msdata.SystGlobalNetworkRules.t() | :not_found

Retrieves a Global Network Rule record based on its record ID, raising on
error.
This function works the same as get_global_network_rule/1 except this
function returns its result without wrapping it in a result tuple. If an
error is encountered, including if the record does not exist, an exception is
raised.

 Parameters

	global_network_rule_id - the record ID of the desired Global Network Rule
record.

 Link to this function

 get_instance_network_rule(instance_network_rule_id)

 @spec get_instance_network_rule(Ecto.UUID.t()) ::
 {:ok, Msdata.SystInstanceNetworkRules.t()}
 | {:ok, :not_found}
 | {:error, MscmpSystError.t() | Exception.t()}

Retrieves a Instance Network Rule record based on its record ID.
For a given Instance Network Rule record ID this function will return a result
tuple in the form of {:ok, <record>} where <record> is the fully
populated Msdata.SystInstanceNetworkRules. If the
record does not exist, then {:ok, :not_found} is returned. Otherwise, an
error tuple in the form of {:error, <exception>} is returned.

 Parameters

	instance_network_rule_id - the record ID of the desired Instance Network
Rule record.

 Link to this function

 get_instance_network_rule!(instance_network_rule_id)

 @spec get_instance_network_rule!(Ecto.UUID.t()) ::
 Msdata.SystInstanceNetworkRules.t() | :not_found

Retrieves a Instance Network Rule record based on its record ID, raising on
error.
This function works the same as get_instance_network_rule/1 except this
function returns its result without wrapping it in a result tuple. If an
error is encountered, including if the record does not exist, an exception is
raised.

 Parameters

	instance_network_rule_id - the record ID of the desired Instance Network
Rule record.

 Link to this function

 get_owner_network_rule(owner_network_rule_id)

 @spec get_owner_network_rule(Ecto.UUID.t()) ::
 {:ok, Msdata.SystOwnerNetworkRules.t()}
 | {:ok, :not_found}
 | {:error, MscmpSystError.t() | Exception.t()}

Retrieves a Owner Network Rule record based on its record ID.
For a given Owner Network Rule record ID this function will return a result
tuple in the form of {:ok, <record>} where <record> is the fully
populated Msdata.SystOwnerNetworkRules. If the
record does not exist, then {:ok, :not_found} is returned. Otherwise, an
error tuple in the form of {:error, <exception>} is returned.

 Parameters

	owner_network_rule_id - the record ID of the desired Owner Network Rule
record.

 Link to this function

 get_owner_network_rule!(owner_network_rule_id)

 @spec get_owner_network_rule!(Ecto.UUID.t()) ::
 Msdata.SystOwnerNetworkRules.t() | :not_found

Retrieves a Owner Network Rule record based on its record ID, raising on
error.
This function works the same as get_owner_network_rule/1 except this
function returns its result without wrapping it in a result tuple. If an
error is encountered, including if the record does not exist, an exception is
raised.

 Parameters

	owner_network_rule_id - the record ID of the desired Owner Network Rule
record.

 Link to this function

 host_disallowed(host_address)

 @spec host_disallowed(MscmpSystAuthn.Types.host_address()) ::
 {:ok, boolean()} | {:error, MscmpSystError.t()}

Indicates whether the provided host IP address is to be denied access to the
system.
This function returns a tuple in the form of {:ok, <disallowed>} where the
disallowed value is either true meaning that the requested host is
disallowed from authenticating with the system or false if the host is
permitted to attempt an authentication.

 Parameters

	host_address - the host IP address to test. Typically this will be the
host address of a user wishing to authenticate with the system.

 Examples

 An allowed host will return a false result tuple.
iex> import MscmpSystNetwork, only: [sigil_i: 2]
iex> MscmpSystAuthn.host_disallowed(~i"10.150.150.10")
{:ok, false}
 A disallowed host returns a true result tuple.
iex> import MscmpSystNetwork, only: [sigil_i: 2]
iex> MscmpSystAuthn.host_disallowed(~i"10.123.123.5")
{:ok, true}

 Link to this function

 host_disallowed?(host_address)

 @spec host_disallowed?(MscmpSystAuthn.Types.host_address()) :: boolean()

Indicates whether the provided host IP address is to be denied access to the
system, raising on error.
This function works the same as host_disallowed/1 except this function
returns its result without wrapping it in a result tuple. If an error is
encountered an exception is raised.

 Parameters

	host_address - the host IP address to test. Typically this will be the
host address of a user wishing to authenticate with the system.

 Examples

 An allowed host will return a false value.
iex> import MscmpSystNetwork, only: [sigil_i: 2]
iex> MscmpSystAuthn.host_disallowed?(~i"10.150.150.10")
false
 A disallowed host returns a true value.
iex> import MscmpSystNetwork, only: [sigil_i: 2]
iex> MscmpSystAuthn.host_disallowed?(~i"10.123.123.5")
true

 Link to this function

 update_global_network_rule(global_network_rule, update_params)

 @spec update_global_network_rule(
 Ecto.UUID.t() | Msdata.SystGlobalNetworkRules.t(),
 MscmpSystAuthn.Types.global_network_rule_params()
) ::
 {:ok, Msdata.SystGlobalNetworkRules.t()}
 | {:error, MscmpSystError.t() | Exception.t()}

Updates an existing Global Network Rule with new values.
This function works similar to create_global_network_rule/1 but updates an
existing Global Network Rule record rather than creating a new one.
On successful update, a result tuple in the form {:ok, <record>} is returned
where the <record> is the fully populated Data struct of the record just
updated. If an exception is raised this function will return a failure tuple
in the form of {:error, <exception data>}.

 Parameters

	global_network_rule - this value is either a fully populated
Msdata.SystGlobalNetworkRules struct of an existing
Global Network Rule record or the ID of such a record. If the data struct
is provided, Ecto optimistic locking is applied to the update operation.

	update_params - a map representing the values to use when updating the
Global Network Rule. All parameters are optional, with omission meaning
that the existing value should retain its current value. See
MscmpSystAuthn.Types.global_network_rule_params/0 for the
available attributes.

 Link to this function

 update_instance_network_rule(instance_network_rule, update_params)

 @spec update_instance_network_rule(
 Ecto.UUID.t() | Msdata.SystInstanceNetworkRules.t(),
 MscmpSystAuthn.Types.instance_network_rule_params()
) ::
 {:ok, Msdata.SystInstanceNetworkRules.t()}
 | {:error, MscmpSystError.t() | Exception.t()}

Updates an existing Instance Network Rule with new values.
This function works similar to create_instance_network_rule/2 but updates an
existing Instance Network Rule record rather than creating a new one.
On successful update, a result tuple in the form {:ok, <record>} is returned
where the <record> is the fully populated Data struct of the record just
updated. If an exception is raised this function will return a failure tuple
in the form of {:error, <exception data>}.

 Parameters

	instance_network_rule - this value is either a fully populated
Msdata.SystInstanceNetworkRules struct of an
existing Instance Network Rule record or the ID of such a record. If the
data struct is provided, Ecto optimistic locking is applied to the update
operation.

	update_params - a map representing the values to use when updating the
Instance Network Rule. All parameters are optional, with omission meaning
that the existing value should retain its current value. See
MscmpSystAuthn.Types.instance_network_rule_params/0 for the
available attributes.

 Link to this function

 update_owner_network_rule(owner_network_rule, update_params)

 @spec update_owner_network_rule(
 Ecto.UUID.t() | Msdata.SystOwnerNetworkRules.t(),
 MscmpSystAuthn.Types.owner_network_rule_params()
) ::
 {:ok, Msdata.SystOwnerNetworkRules.t()}
 | {:error, MscmpSystError.t() | Exception.t()}

Updates an existing Owner Network Rule with new values.
This function works similar to create_owner_network_rule/2 but updates an
existing Owner Network Rule record rather than creating a new one.
On successful update, a result tuple in the form {:ok, <record>} is returned
where the <record> is the fully populated Data struct of the record just
updated. If an exception is raised this function will return a failure tuple
in the form of {:error, <exception data>}.

 Parameters

	owner_network_rule - this value is either a fully populated
Msdata.SystOwnerNetworkRules struct of an existing
Owner Network Rule record or the ID of such a record. If the data struct
is provided, Ecto optimistic locking is applied to the update operation.

	update_params - a map representing the values to use when updating the
Owner Network Rule. All parameters are optional, with omission meaning
that the existing value should retain its current value. See
MscmpSystAuthn.Types.owner_network_rule_params/0 for the
available attributes.

 Enumeration Access

 Link to this function

 get_credential_type_by_name(credential_type_name)

 @spec get_credential_type_by_name(MscmpSystAuthn.Types.credential_type_name()) ::
 Msdata.SystEnumItems.t() | nil

Returns the Credential Type record for the given Internal Name; raises on error.
On successful execution either the requested Credential Type Enumeration record
is returned or nil if the record does not exist.

 Parameters

	credential_type_name - the Internal Name of the desire Credential Type
record to return.

 Examples

Finding a Credential Type record by Internal Name.
iex> %Msdata.SystEnumItems{} =
...> MscmpSystAuthn.get_credential_type_by_name("credential_types_sysdef_token_api")
Looking for a non-existent record.
iex> MscmpSystAuthn.get_credential_type_by_name("nonexistent_type")
nil

 Link to this function

 get_credential_type_default(functional_type \\ nil)

 @spec get_credential_type_default(
 MscmpSystAuthn.Types.credential_type_functional_types()
 | nil
) ::
 Msdata.SystEnumItems.t()

Returns the Credential Type Enumeration record which is configured as being
default.
If no Credential Type record is configured as default, then nil is returned.

 Parameters

	functional_type - an optional parameter which, if provided and not
nil, will return the default Credential Type record configured for the
requested functional type rather than the system default Credential Type.
The default for this parameter is to treat the parameter as not provided
(nil).

 Examples

Requesting the system default Credential Type.
iex> %Msdata.SystEnumItems{internal_name: "credential_types_sysdef_password"} =
...> MscmpSystAuthn.get_credential_type_default()
Requesting the default Credential Type for a specific functional type.
iex> %Msdata.SystEnumItems{internal_name: "credential_types_sysdef_mfa_totp"} =
...> MscmpSystAuthn.get_credential_type_default(:credential_types_mfa_totp)

 Link to this function

 get_identity_type_by_name(identity_type_name)

 @spec get_identity_type_by_name(MscmpSystAuthn.Types.identity_type_name()) ::
 Msdata.SystEnumItems.t() | nil

Returns the Identity Type record for the given Internal Name; raises on error.
On successful execution either the requested Identity Type Enumeration record
is returned or nil if the record does not exist.

 Parameters

	identity_type_name - the Internal Name of the desire Identity Type
record to return.

 Examples

Finding a Identity Type record by Internal Name.
iex> %Msdata.SystEnumItems{} =
...> MscmpSystAuthn.get_identity_type_by_name("identity_types_sysdef_account")
Looking for a non-existent record.
iex> MscmpSystAuthn.get_identity_type_by_name("nonexistent_type")
nil

 Link to this function

 get_identity_type_default(functional_type \\ nil)

 @spec get_identity_type_default(
 MscmpSystAuthn.Types.identity_type_functional_types()
 | nil
) ::
 Msdata.SystEnumItems.t()

Returns the Identity Type Enumeration record which is configured as being
default.
If no Identity Type record is configured as default, then nil is returned.

 Parameters

	functional_type - an optional parameter which, if provided and not
nil, will return the default Identity Type record configured for the
requested functional type rather than the system default Identity Type.
The default for this parameter is to treat the parameter as not provided
(nil).

 Examples

Requesting the system default Identity Type.
iex> %Msdata.SystEnumItems{internal_name: "identity_types_sysdef_email"} =
...> MscmpSystAuthn.get_identity_type_default()
Requesting the default Identity Type for a specific functional type.
iex> %Msdata.SystEnumItems{internal_name: "identity_types_sysdef_api"} =
...> MscmpSystAuthn.get_identity_type_default(:identity_types_api)

Msdata.SystAccessAccountInstanceAssocs

Associates access accounts with the instances for which they are allowed to
authenticate to.
Note that being able to authenticate to an instance is not the same as having
authorized rights within the instance; authorization is handled by the
instance directly.
Defined in MscmpSystAuthn.

 Summary

 Types

 t()

 Functions

 insert_changeset(insert_params)

 See MscmpSystAuthn.Impl.Msdata.SystAccessAccountInstanceAssocs.Validators.insert_changeset/1.

 update_changeset(access_account_instance_assoc, update_params)

 See MscmpSystAuthn.Impl.Msdata.SystAccessAccountInstanceAssocs.Validators.update_changeset/2.

 Types

 Link to this type

 t()

 @type t() :: %Msdata.SystAccessAccountInstanceAssocs{
 __meta__: Ecto.Schema.Metadata.t(),
 access_account:
 Msdata.SystAccessAccounts.t() | Ecto.Association.NotLoaded.t() | nil,
 access_account_id: MscmpSystAuthn.Types.access_account_id() | nil,
 access_granted: DateTime.t() | nil,
 diag_role_created: String.t() | nil,
 diag_role_modified: String.t() | nil,
 diag_row_version: integer() | nil,
 diag_timestamp_created: DateTime.t() | nil,
 diag_timestamp_modified: DateTime.t() | nil,
 diag_update_count: integer() | nil,
 diag_wallclock_modified: DateTime.t() | nil,
 id: Ecto.UUID.t() | nil,
 instance: Msdata.SystInstances.t() | Ecto.Association.NotLoaded.t() | nil,
 instance_id: MscmpSystInstance.Types.instance_id() | nil,
 invitation_declined: DateTime.t() | nil,
 invitation_expires: DateTime.t() | nil,
 invitation_issued: DateTime.t() | nil
}

 Functions

 Link to this function

 insert_changeset(insert_params)

 @spec insert_changeset(MscmpSystAuthn.Types.access_account_instance_assoc_params()) ::
 Ecto.Changeset.t()

See MscmpSystAuthn.Impl.Msdata.SystAccessAccountInstanceAssocs.Validators.insert_changeset/1.

 Link to this function

 update_changeset(access_account_instance_assoc, update_params)

 @spec update_changeset(
 t(),
 MscmpSystAuthn.Types.access_account_instance_assoc_params()
) :: Ecto.Changeset.t()

See MscmpSystAuthn.Impl.Msdata.SystAccessAccountInstanceAssocs.Validators.update_changeset/2.

Msdata.SystAccessAccounts

Contains the known login accounts which are used solely for the purpose of
authentication of users.
Authorization is handled on a per-instance basis within the application.
Defined in MscmpSystAuthn

 Summary

 Types

 t()

 Functions

 insert_changeset(insert_params, opts \\ [])

 See MscmpSystAuthn.Impl.Msdata.SystAccessAccounts.Validators.insert_changeset/2.

 update_changeset(access_account, update_params, opts \\ [])

 See MscmpSystAuthn.Impl.Msdata.SystAccessAccounts.Validators.update_changeset/3.

 Types

 Link to this type

 t()

 @type t() :: %Msdata.SystAccessAccounts{
 __meta__: Ecto.Schema.Metadata.t(),
 access_account_instance_assocs: term(),
 access_account_state:
 Msdata.SystEnumItems.t() | Ecto.Association.NotLoaded.t() | nil,
 access_account_state_id: MscmpSystAuthn.Types.access_account_state_id() | nil,
 allow_global_logins: boolean() | nil,
 credentials: term(),
 diag_role_created: String.t() | nil,
 diag_role_modified: String.t() | nil,
 diag_row_version: integer() | nil,
 diag_timestamp_created: DateTime.t() | nil,
 diag_timestamp_modified: DateTime.t() | nil,
 diag_update_count: integer() | nil,
 diag_wallclock_modified: DateTime.t() | nil,
 external_name: String.t() | nil,
 id: Ecto.UUID.t() | nil,
 identities: term(),
 internal_name: MscmpSystAuthn.Types.access_account_name() | nil,
 owning_owner: Msdata.SystOwners.t() | Ecto.Association.NotLoaded.t() | nil,
 owning_owner_id: MscmpSystInstance.Types.owner_id() | nil,
 password_history: term()
}

 Functions

 Link to this function

 insert_changeset(insert_params, opts \\ [])

 @spec insert_changeset(MscmpSystAuthn.Types.access_account_params(), Keyword.t()) ::
 Ecto.Changeset.t()

See MscmpSystAuthn.Impl.Msdata.SystAccessAccounts.Validators.insert_changeset/2.

 Link to this function

 update_changeset(access_account, update_params, opts \\ [])

 @spec update_changeset(
 t(),
 MscmpSystAuthn.Types.access_account_params(),
 Keyword.t()
) :: Ecto.Changeset.t()

See MscmpSystAuthn.Impl.Msdata.SystAccessAccounts.Validators.update_changeset/3.

Msdata.SystCredentials

Hosts the credentials by which a user or external system will prove its
identity.
Note that not all credential types are available for authentication with all
identity types.
Defined in MscmpSystAuthn.

 Summary

 Types

 t()

 Functions

 insert_changeset(insert_params)

 See MscmpSystAuthn.Impl.Msdata.SystCredentials.Validators.insert_changeset/1.

 update_changeset(credential, update_params)

 See MscmpSystAuthn.Impl.Msdata.SystCredentials.Validators.update_changeset/2.

 Types

 Link to this type

 t()

 @type t() :: %Msdata.SystCredentials{
 __meta__: Ecto.Schema.Metadata.t(),
 access_account:
 Msdata.SystAccessAccounts.t() | Ecto.Association.NotLoaded.t() | nil,
 access_account_id: MscmpSystAuthn.Types.access_account_id() | nil,
 credential_data: String.t() | nil,
 credential_for_identity:
 Msdata.SystIdentities.t() | Ecto.Association.NotLoaded.t() | nil,
 credential_for_identity_id: MscmpSystAuthn.Types.identity_id() | nil,
 credential_type: t() | Ecto.Association.NotLoaded.t() | nil,
 credential_type_id: MscmpSystAuthn.Types.credential_type_id() | nil,
 diag_role_created: String.t() | nil,
 diag_role_modified: String.t() | nil,
 diag_row_version: integer() | nil,
 diag_timestamp_created: DateTime.t() | nil,
 diag_timestamp_modified: DateTime.t() | nil,
 diag_update_count: integer() | nil,
 diag_wallclock_modified: DateTime.t() | nil,
 force_reset: DateTime.t() | nil,
 id: Ecto.UUID.t() | nil,
 last_updated: DateTime.t() | nil
}

 Functions

 Link to this function

 insert_changeset(insert_params)

 @spec insert_changeset(MscmpSystAuthn.Types.credential_params()) :: Ecto.Changeset.t()

See MscmpSystAuthn.Impl.Msdata.SystCredentials.Validators.insert_changeset/1.

 Link to this function

 update_changeset(credential, update_params)

 @spec update_changeset(t(), MscmpSystAuthn.Types.credential_params()) ::
 Ecto.Changeset.t()

See MscmpSystAuthn.Impl.Msdata.SystCredentials.Validators.update_changeset/2.

Msdata.SystDisallowedHosts

A simple listing of "banned" IP address which are not allowed to authenticate
their users to the system.
This registry differs from the syst_*_network_rules tables in that IP
addresses here are registered as the result of automatic system heuristics
whereas the network rules are direct expressions of system administrator
intent. The timing between these two mechanisms is also different in that
records in this table are evaluated prior to an authentication attempt and
most network rules are processed in the authentication attempt sequence.
Defined in MscmpSystAuthn.

 Summary

 Types

 t()

 Functions

 insert_changeset(host_address)

 See MscmpSystAuthn.Impl.Msdata.SystDisallowedHosts.Validators.insert_changeset/1.

 Types

 Link to this type

 t()

 @type t() :: %Msdata.SystDisallowedHosts{
 __meta__: Ecto.Schema.Metadata.t(),
 host_address: MscmpSystDb.DbTypes.Inet.t() | nil,
 id: term()
}

 Functions

 Link to this function

 insert_changeset(host_address)

 @spec insert_changeset(MscmpSystDb.DbTypes.Inet.t()) :: Ecto.Changeset.t()

See MscmpSystAuthn.Impl.Msdata.SystDisallowedHosts.Validators.insert_changeset/1.

Msdata.SystDisallowedPasswords

Represents a SHA-1 hashed password which is expected to be listed in
the dictionaries used by attackers to compromised online accounts. Disallowed
passwords, as the name suggests, are used to prevent users selecting these
known compromised passwords when the password rule to disallow known passwords
is in effect.
Defined in MscmpSystAuthn.

 Summary

 Types

 t()

 Functions

 insert_changeset(password_hash)

 See MscmpSystAuthn.Impl.Msdata.SystDisallowedPasswords.Validators.insert_changeset/1.

 Types

 Link to this type

 t()

 @type t() :: %Msdata.SystDisallowedPasswords{
 __meta__: Ecto.Schema.Metadata.t(),
 password_hash: binary() | nil
}

 Functions

 Link to this function

 insert_changeset(password_hash)

 @spec insert_changeset(binary()) :: Ecto.Changeset.t()

See MscmpSystAuthn.Impl.Msdata.SystDisallowedPasswords.Validators.insert_changeset/1.

Msdata.SystGlobalNetworkRules

Expresses globally applicable rules concerning which hosts, as identified by
IP address, may or may not attempt to authenticate with the system.
These are part of a firewall-like set of rules of which those defined in this
'global' scope are applied prior to any SystOwnerNetworkRules and
SystInstanceNetworkRules.
Defined in MscmpSystAuthn.

 Summary

 Types

 t()

 Functions

 insert_changeset(insert_params)

 See MscmpSystAuthn.Impl.Msdata.SystGlobalNetworkRules.Validators.insert_changeset/1.

 update_changeset(global_network_rule, update_params)

 See MscmpSystAuthn.Impl.Msdata.SystGlobalNetworkRules.Validators.update_changeset/2.

 Types

 Link to this type

 t()

 @type t() :: %Msdata.SystGlobalNetworkRules{
 __meta__: Ecto.Schema.Metadata.t(),
 diag_role_created: String.t() | nil,
 diag_role_modified: String.t() | nil,
 diag_row_version: integer() | nil,
 diag_timestamp_created: DateTime.t() | nil,
 diag_timestamp_modified: DateTime.t() | nil,
 diag_update_count: integer() | nil,
 diag_wallclock_modified: DateTime.t() | nil,
 functional_type: String.t() | nil,
 id: Ecto.UUID.t() | nil,
 ip_family: integer() | nil,
 ip_host_or_network: MscmpSystDb.DbTypes.Inet.t() | nil,
 ip_host_range_lower: MscmpSystDb.DbTypes.Inet.t() | nil,
 ip_host_range_upper: MscmpSystDb.DbTypes.Inet.t() | nil,
 ordering: integer() | nil
}

 Functions

 Link to this function

 insert_changeset(insert_params)

 @spec insert_changeset(MscmpSystAuthn.Types.global_network_rule_params()) ::
 Ecto.Changeset.t()

See MscmpSystAuthn.Impl.Msdata.SystGlobalNetworkRules.Validators.insert_changeset/1.

 Link to this function

 update_changeset(global_network_rule, update_params)

 @spec update_changeset(t(), MscmpSystAuthn.Types.global_network_rule_params()) ::
 Ecto.Changeset.t()

See MscmpSystAuthn.Impl.Msdata.SystGlobalNetworkRules.Validators.update_changeset/2.

Msdata.SystGlobalPasswordRules

Establishes rules defining the minimum allowed password complexity
on a global, whole system basis.
Rules defined here may be further strengthened by rules defined by
SystOwnerPasswordRules, but may not be weakened by those definitions.
Defined in MscmpSystAuthn.

 Summary

 Types

 t()

 Functions

 update_changeset(global_password_rule, update_params)

 See MscmpSystAuthn.Impl.Msdata.SystGlobalPasswordRules.Validators.update_changeset/2.

 Types

 Link to this type

 t()

 @type t() :: %Msdata.SystGlobalPasswordRules{
 __meta__: Ecto.Schema.Metadata.t(),
 allowed_mfa_types: [String.t()] | nil,
 diag_role_created: String.t() | nil,
 diag_role_modified: String.t() | nil,
 diag_row_version: integer() | nil,
 diag_timestamp_created: DateTime.t() | nil,
 diag_timestamp_modified: DateTime.t() | nil,
 diag_update_count: integer() | nil,
 diag_wallclock_modified: DateTime.t() | nil,
 disallow_compromised: boolean() | nil,
 disallow_recently_used: integer() | nil,
 id: Ecto.UUID.t() | nil,
 max_age: MscmpSystDb.DbTypes.Interval.t() | nil,
 password_length: MscmpSystDb.DbTypes.IntegerRange.t() | nil,
 require_lower_case: integer() | nil,
 require_mfa: boolean() | nil,
 require_numbers: integer() | nil,
 require_symbols: integer() | nil,
 require_upper_case: integer() | nil
}

 Functions

 Link to this function

 update_changeset(global_password_rule, update_params)

 @spec update_changeset(t(), MscmpSystAuthn.Types.password_rule_params()) ::
 Ecto.Changeset.t()

See MscmpSystAuthn.Impl.Msdata.SystGlobalPasswordRules.Validators.update_changeset/2.

Msdata.SystIdentities

The identities with which access accounts are identified to the system.
The most common example of an identity would be a user name such as an email
address.
Defined in MscmpSystAuthn.

 Summary

 Types

 t()

 Functions

 insert_changeset(insert_params)

 See MscmpSystAuthn.Impl.Msdata.SystIdentities.Validators.insert_changeset/1.

 update_changeset(identity, update_params)

 See MscmpSystAuthn.Impl.Msdata.SystIdentities.Validators.update_changeset/2.

 Types

 Link to this type

 t()

 @type t() :: %Msdata.SystIdentities{
 __meta__: Ecto.Schema.Metadata.t(),
 access_account:
 Msdata.SystAccessAccounts.t() | Ecto.Association.NotLoaded.t() | nil,
 access_account_id: MscmpSystAuthn.Types.access_account_id() | nil,
 account_identifier: String.t() | nil,
 diag_role_created: String.t() | nil,
 diag_role_modified: String.t() | nil,
 diag_row_version: integer() | nil,
 diag_timestamp_created: DateTime.t() | nil,
 diag_timestamp_modified: DateTime.t() | nil,
 diag_update_count: integer() | nil,
 diag_wallclock_modified: DateTime.t() | nil,
 external_name: String.t() | nil,
 id: Ecto.UUID.t() | nil,
 identity_expires: DateTime.t() | nil,
 identity_type:
 Msdata.SystEnumItems.t() | Ecto.Association.NotLoaded.t() | nil,
 identity_type_id: MscmpSystAuthn.Types.identity_type_id() | nil,
 validated: DateTime.t() | nil,
 validates_identity: t() | Ecto.Association.NotLoaded.t() | nil,
 validates_identity_id: MscmpSystAuthn.Types.identity_id() | nil,
 validation_requested: DateTime.t() | nil
}

 Functions

 Link to this function

 insert_changeset(insert_params)

 @spec insert_changeset(MscmpSystAuthn.Types.identity_params()) :: Ecto.Changeset.t()

See MscmpSystAuthn.Impl.Msdata.SystIdentities.Validators.insert_changeset/1.

 Link to this function

 update_changeset(identity, update_params)

 @spec update_changeset(t(), MscmpSystAuthn.Types.identity_params()) ::
 Ecto.Changeset.t()

See MscmpSystAuthn.Impl.Msdata.SystIdentities.Validators.update_changeset/2.

Msdata.SystInstanceNetworkRules

Expresses Instance specific rules concerning which hosts, as identified by
IP address, may or may not attempt to authenticate with the system.
These are part of a firewall-like set of rules of which those defined in this
'instance' scope are evaluated after any SystGlobalNetworkRules and
SystOwnerNetworkRules defined rules have been processed.
Defined in MscmpSystAuthn.

 Summary

 Types

 t()

 Functions

 insert_changeset(insert_params)

 See MscmpSystAuthn.Impl.Msdata.SystInstanceNetworkRules.Validators.insert_changeset/1.

 update_changeset(instance_id, update_params)

 See MscmpSystAuthn.Impl.Msdata.SystInstanceNetworkRules.Validators.update_changeset/2.

 Types

 Link to this type

 t()

 @type t() :: %Msdata.SystInstanceNetworkRules{
 __meta__: Ecto.Schema.Metadata.t(),
 diag_role_created: String.t() | nil,
 diag_role_modified: String.t() | nil,
 diag_row_version: integer() | nil,
 diag_timestamp_created: DateTime.t() | nil,
 diag_timestamp_modified: DateTime.t() | nil,
 diag_update_count: integer() | nil,
 diag_wallclock_modified: DateTime.t() | nil,
 functional_type: String.t() | nil,
 id: Ecto.UUID.t() | nil,
 instance: Msdata.SystInstances.t() | Ecto.Association.NotLoaded.t() | nil,
 instance_id: MscmpSystInstance.Types.instance_id() | nil,
 ip_family: integer() | nil,
 ip_host_or_network: MscmpSystDb.DbTypes.Inet.t() | nil,
 ip_host_range_lower: MscmpSystDb.DbTypes.Inet.t() | nil,
 ip_host_range_upper: MscmpSystDb.DbTypes.Inet.t() | nil,
 ordering: integer() | nil
}

 Functions

 Link to this function

 insert_changeset(insert_params)

 @spec insert_changeset(MscmpSystAuthn.Types.instance_network_rule_params()) ::
 Ecto.Changeset.t()

See MscmpSystAuthn.Impl.Msdata.SystInstanceNetworkRules.Validators.insert_changeset/1.

 Link to this function

 update_changeset(instance_id, update_params)

 @spec update_changeset(t(), MscmpSystAuthn.Types.instance_network_rule_params()) ::
 Ecto.Changeset.t()

See MscmpSystAuthn.Impl.Msdata.SystInstanceNetworkRules.Validators.update_changeset/2.

Msdata.SystOwnerNetworkRules

Expresses Owner specific rules concerning which hosts, as identified by
IP address, may or may not attempt to authenticate with the system.
These are part of a firewall-like set of rules of which those defined in this
'owner' scope are evaluated after any SystGlobalNetworkRules defined rules
and prior to any SystInstanceNetworkRules defined rules.
Defined in MscmpSystAuthn.

 Summary

 Types

 t()

 Functions

 insert_changeset(insert_params)

 See MscmpSystAuthn.Impl.Msdata.SystOwnerNetworkRules.Validators.insert_changeset/1.

 update_changeset(owner_network_rule, update_params)

 See MscmpSystAuthn.Impl.Msdata.SystOwnerNetworkRules.Validators.update_changeset/2.

 Types

 Link to this type

 t()

 @type t() :: %Msdata.SystOwnerNetworkRules{
 __meta__: Ecto.Schema.Metadata.t(),
 diag_role_created: String.t() | nil,
 diag_role_modified: String.t() | nil,
 diag_row_version: integer() | nil,
 diag_timestamp_created: DateTime.t() | nil,
 diag_timestamp_modified: DateTime.t() | nil,
 diag_update_count: integer() | nil,
 diag_wallclock_modified: DateTime.t() | nil,
 functional_type: String.t() | nil,
 id: Ecto.UUID.t() | nil,
 ip_family: integer() | nil,
 ip_host_or_network: MscmpSystDb.DbTypes.Inet.t() | nil,
 ip_host_range_lower: MscmpSystDb.DbTypes.Inet.t() | nil,
 ip_host_range_upper: MscmpSystDb.DbTypes.Inet.t() | nil,
 ordering: integer() | nil,
 owner: Msdata.SystOwners.t() | Ecto.Association.NotLoaded.t() | nil,
 owner_id: MscmpSystInstance.Types.owner_id() | nil
}

 Functions

 Link to this function

 insert_changeset(insert_params)

 @spec insert_changeset(MscmpSystAuthn.Types.owner_network_rule_params()) ::
 Ecto.Changeset.t()

See MscmpSystAuthn.Impl.Msdata.SystOwnerNetworkRules.Validators.insert_changeset/1.

 Link to this function

 update_changeset(owner_network_rule, update_params)

 @spec update_changeset(t(), MscmpSystAuthn.Types.owner_network_rule_params()) ::
 Ecto.Changeset.t()

See MscmpSystAuthn.Impl.Msdata.SystOwnerNetworkRules.Validators.update_changeset/2.

Msdata.SystOwnerPasswordRules

Establishes Owner specific rules defining the minimum allowed password
complexity.
Rules defined here may further strengthen the rules defined by
SystGlobalPasswordRules, but may not be weaken those definitions.
Defined in MscmpSystAuthn.

 Summary

 Types

 t()

 Functions

 insert_changeset(insert_params)

 See MscmpSystAuthn.Impl.Msdata.SystOwnerPasswordRules.Validators.insert_changeset/1.

 update_changeset(owner_password_rule, update_params)

 See MscmpSystAuthn.Impl.Msdata.SystOwnerPasswordRules.Validators.update_changeset/2.

 Types

 Link to this type

 t()

 @type t() :: %Msdata.SystOwnerPasswordRules{
 __meta__: Ecto.Schema.Metadata.t(),
 allowed_mfa_types: [String.t()] | nil,
 diag_role_created: String.t() | nil,
 diag_role_modified: String.t() | nil,
 diag_row_version: integer() | nil,
 diag_timestamp_created: DateTime.t() | nil,
 diag_timestamp_modified: DateTime.t() | nil,
 diag_update_count: integer() | nil,
 diag_wallclock_modified: DateTime.t() | nil,
 disallow_compromised: boolean() | nil,
 disallow_recently_used: integer() | nil,
 id: Ecto.UUID.t() | nil,
 max_age: MscmpSystDb.DbTypes.Interval.t() | nil,
 owner: Msdata.SystOwners.t() | Ecto.Association.NotLoaded.t() | nil,
 owner_id: MscmpSystInstance.Types.owner_id() | nil,
 password_length: MscmpSystDb.DbTypes.IntegerRange.t() | nil,
 require_lower_case: integer() | nil,
 require_mfa: boolean() | nil,
 require_numbers: integer() | nil,
 require_symbols: integer() | nil,
 require_upper_case: integer() | nil
}

 Functions

 Link to this function

 insert_changeset(insert_params)

 @spec insert_changeset(MscmpSystAuthn.Types.password_rule_params()) ::
 Ecto.Changeset.t()

See MscmpSystAuthn.Impl.Msdata.SystOwnerPasswordRules.Validators.insert_changeset/1.

 Link to this function

 update_changeset(owner_password_rule, update_params)

 @spec update_changeset(t(), MscmpSystAuthn.Types.password_rule_params()) ::
 Ecto.Changeset.t()

See MscmpSystAuthn.Impl.Msdata.SystOwnerPasswordRules.Validators.update_changeset/2.

Msdata.SystPasswordHistory

A history of previous user passwords credentials kept for the purpose of
enforcing the reused password exclusion rule.
Defined in MscmpSystAuthn.

 Summary

 Types

 t()

 Functions

 insert_changeset(access_account_id, credential_data)

 See MscmpSystAuthn.Impl.Msdata.SystPasswordHistory.Validators.insert_changeset/2.

 Types

 Link to this type

 t()

 @type t() :: %Msdata.SystPasswordHistory{
 __meta__: Ecto.Schema.Metadata.t(),
 access_account:
 Msdata.SystAccessAccounts.t() | Ecto.Association.NotLoaded.t() | nil,
 access_account_id: MscmpSystAuthn.Types.access_account_id() | nil,
 credential_data: String.t() | nil,
 diag_role_created: String.t() | nil,
 diag_role_modified: String.t() | nil,
 diag_row_version: integer() | nil,
 diag_timestamp_created: DateTime.t() | nil,
 diag_timestamp_modified: DateTime.t() | nil,
 diag_update_count: integer() | nil,
 diag_wallclock_modified: DateTime.t() | nil,
 id: Ecto.UUID.t() | nil
}

 Functions

 Link to this function

 insert_changeset(access_account_id, credential_data)

 @spec insert_changeset(MscmpSystAuthn.Types.access_account_id(), String.t()) ::
 Ecto.Changeset.t()

See MscmpSystAuthn.Impl.Msdata.SystPasswordHistory.Validators.insert_changeset/2.

MscmpSystAuthn.Types

Types used by the Authentication module.

 Summary

 Types

 access_account_id()

 Defines the expected type of Access Account record ID values.

 access_account_instance_assoc_id()

 Defines the expected type of Access Account Instance Association record ID
values.

 access_account_instance_assoc_params()

 Defines the expected shape and types of Access Account Instance Association
Parameters.

 access_account_name()

 Defines the type of Access Account Internal Name values.

 access_account_params()

 Defines the shape and expected types of Access Account Changeset parameters.

 access_account_state_functional_types()

 Access Account State functional types which are assigned to Access Account
State records for the purpose of influencing system functionality and
behavior.

 access_account_state_id()

 Defines the type of Access Account State record ID values.

 access_account_state_name()

 Defines the type of Access Account State Internal Name values.

 account_identifier()

 The expected type of values used to identify an Access Account.

 authentication_extended_operations()

 Defines required operations during an authentication attempt which are
considered extended, meaning that they interrupt the normal authentication
flow.

 authentication_operations()

 A list of known operations which may occur during an authentication attempt.

 authentication_status()

 The understood life-cycle states of the authentication process.

 authenticator_types()

 The supported types of authentication.

 credential()

 Defines the type expected for user provided plaintext Credentials.

 credential_confirm_result()

 Used to define the return value of an attempted Credential Confirmation.

 credential_confirm_state()

 Defines the possible outcomes of an attempt to confirm a user provided
Credential.

 credential_extended_state()

 Known extended Credential confirmation states indicating required post-
confirmation actions.

 credential_id()

 Defines the Credential record ID type.

 credential_params()

 A type to facilitate data maintenance operations related to Credential
records.

 credential_reset_reason()

 Provides additional Credential Extended State values when Credential resets
are required.

 credential_set_failures()

 A extended return value used when Credentials setting operations have failed.

 credential_type_functional_types()

 Established classes of Credential Types which share common system
functionality.

 credential_type_id()

 The Credential Type record ID database type.

 credential_type_name()

 Defines the expected type of the Credential Type record Internal Name.

 credential_types()

 The Credential Types known by the system.

 disallowed_host_id()

 The Disallowed Host record ID database type.

 global_network_rule_params()

 Defines the available parameters for use in creating or updating Global
Network Rule records.

 host_address()

 Defines the data type and structure of Host IP Addresses.

 identity_id()

 Establishes the data type of the Identity record ID.

 identity_params()

 Defines a map of attributes for use in Identity record Changeset processing.

 identity_type_functional_types()

 Identifies the categorizations of Identity Types which the system will treat
with different functional responses.

 identity_type_id()

 Defines the Identity Type record ID data type.

 identity_type_name()

 Defines the expected data type of the Identity Type record Internal Name
value.

 identity_types()

 Defines the list of Identity Types known to the system.

 instance_network_rule_params()

 Defines the available parameters for use in creating or updating Instance
Network Rule records.

 network_rule_functional_type()

 Establishes the two basic operations that Network Rule may define.

 network_rule_precedence()

 The known precedence classes of Network Rule definitions.

 owner_network_rule_params()

 Defines the available parameters for use in creating or updating Owner
Network Rule records.

 password_rule_params()

 A map of attributes used to create or update Global and Owner Password Rules.

 password_rule_violations()

 Defines the known Password Rule violations.

 Types

 Link to this type

 access_account_id()

 @type access_account_id() :: Ecto.UUID.t()

Defines the expected type of Access Account record ID values.

 Link to this type

 access_account_instance_assoc_id()

 @type access_account_instance_assoc_id() :: Ecto.UUID.t()

Defines the expected type of Access Account Instance Association record ID
values.

 Link to this type

 access_account_instance_assoc_params()

 @type access_account_instance_assoc_params() :: %{
 optional(:access_account_id) => access_account_id(),
 optional(:access_account_name) => access_account_name(),
 optional(:instance_id) => MscmpSystInstance.Types.instance_id(),
 optional(:instance_name) => MscmpSystInstance.Types.instance_name(),
 optional(:access_granted) => DateTime.t(),
 optional(:invitation_issued) => DateTime.t(),
 optional(:invitation_expires) => DateTime.t(),
 optional(:invitation_declined) => DateTime.t()
}

Defines the expected shape and types of Access Account Instance Association
Parameters.
These parameters are passed to the database Changeset functions for tasks such
as record creation or updating.

 Attributes

	access_account_id - the Access Account record ID which will be
associated with the Instance.

	access_account_name - an alternate method of identifying an Access
Account record by using its Internal Name value. This can be used instead
of the access_account_id attribute.

	instance_id - the record ID of the Instance to which the designated
Access Account record will be associated.

	instance_name - an alternate method of identifying the target Instance
record by using its Internal Name value. This can be used instead of the
instance_id attribute.

	access_granted - when populated the value indicates both that the Access
Account has access to the Instance and indicates specifically when that
access was granted. When nil this value means that the Access Account has
been invited to the access the Instance, but that the Access Account holder
(the user) has not yet accepted the invitation.

	invitation_issued - the specific date and time when the Access Account
was invited to access the Instance. When nil the invitation has not yet
been issued.

	invitation_expires - the date and time by which an invitation for access
must be accepted by the Access Account holder. If the Access Account holder
has not accepted the invitation by the value of this attribute, the record
is considered invalid and the invitation must be reissued.

	invitation_declined - the date and time at which the Access Account
holder declined an invitation to access an Instance. If this value is nil
then the Access Account holder has not specifically declined the request.

 Link to this type

 access_account_name()

 @type access_account_name() :: String.t()

Defines the type of Access Account Internal Name values.

 Link to this type

 access_account_params()

 @type access_account_params() :: %{
 optional(:internal_name) => access_account_name(),
 optional(:external_name) => String.t(),
 optional(:owning_owner_id) => MscmpSystInstance.Types.owner_id(),
 optional(:owning_owner_name) => MscmpSystInstance.Types.owner_name(),
 optional(:allow_global_logins) => boolean(),
 optional(:access_account_state_id) => access_account_state_id(),
 optional(:access_account_state_name) => access_account_name()
}

Defines the shape and expected types of Access Account Changeset parameters.

 Attributes

	internal_name - a candidate key for the Access Account record. This
value must be unique system wide.

	external_name - an externally/user visible name of the Access Account.
This value does not require uniqueness, though care should be exercised in
contexts where it may be displayed alongside other Access Accounts to avoid
confusion.

	owning_owner_id - the record ID of the Owner which manages the Access
Account, if the Access Account is in fact Owner managed. If the Access '
Account is not Owner managed this attribute should be left nil.

	owning_owner_name - an alternative means of identifying the Access
Account's Owner using the Internal Name of the Owner instead of its ID.

	allow_global_logins - if true, the Access Account can log into the
system without specification of an Owner or Instance for context. Typically
this is is used for unowned Access Accounts which may log into a global
interface and then select their desired Application Instance from a list of
those they have been granted access to. If false, a specific Owner or
Instance context is required.

	access_account_state_id - identifies the current life-cycle state of the
Access Account.

	access_account_state_name - an alternative means of identifying the
Access Account State using the Internal Name of the State instead of its
record ID.

 Link to this type

 access_account_state_functional_types()

 @type access_account_state_functional_types() ::
 :access_account_states_pending
 | :access_account_states_active
 | :access_account_states_suspended
 | :access_account_states_inactive
 | :access_account_states_purge_eligible

Access Account State functional types which are assigned to Access Account
State records for the purpose of influencing system functionality and
behavior.
	:access_account_states_pending - Access Accounts in states of this
functional type are not considered active and are limited in use to
facilitating full activation.

	:access_account_states_active - active states are those which all full
use of the associated Access Accounts for all permitted uses of the system.

	:access_account_states_suspended - when an Access Account is in a state
of functional type suspended only certain basic Access Account maintenance
functionality is permitted to the Access Account holder. Regular usage is
naturally denied.

	:access_account_states_inactive - inactive states are not allowed to use
make regular use of the system and are disabled for most purposes. Regular
account maintenance is also typically not allowed.

	:access_account_states_purge_eligible - Access Accounts in states
designated as purge eligible are permitted to be deleted from the system.

 Link to this type

 access_account_state_id()

 @type access_account_state_id() :: MscmpSystEnums.Types.enum_item_id()

Defines the type of Access Account State record ID values.

 Link to this type

 access_account_state_name()

 @type access_account_state_name() :: MscmpSystEnums.Types.enum_item_name()

Defines the type of Access Account State Internal Name values.

 Link to this type

 account_identifier()

 @type account_identifier() :: String.t()

The expected type of values used to identify an Access Account.
The value of the Account Identifier will vary by context. For example, in the
case of Email Identities, the Account Identifier will be an email address; for
API Token Identities, the Account Identifier will likely be a pre-generated
short string of random characters.

 Link to this type

 authentication_extended_operations()

 @type authentication_extended_operations() ::
 :require_mfa
 | :require_mfa_setup
 | :require_instance
 | :require_credential_reset

Defines required operations during an authentication attempt which are
considered extended, meaning that they interrupt the normal authentication
flow.
Certain authentication methods, such as Email/Password authentication, have
certain defined points where an authentication attempt may be interrupted.
Examples of such interruptions include when Multi-Factor Authentication is
required or when the password requires resetting prior to proceeding. In all
of these cases, we have some action that must take place, including possibly
user interactive actions, which must be completed before the full
authentication process can complete successfully.
This type defines the known extended operations which can force this
functionality.

 Link to this type

 authentication_operations()

 @type authentication_operations() ::
 :check_global_network_rules
 | :check_identifier_rate_limit
 | :check_identity
 | :check_credential
 | :check_instance
 | :check_instance_network_rules
 | :check_host_rate_limit
 | authentication_extended_operations()

A list of known operations which may occur during an authentication attempt.
Each type of authentication defines the steps which that kind of
authentication requires to be completed prior to considering the attempt
"authenticated". This type defines references to all of the known operations
that may be required and then includes the
authentication_extended_operations/0 which may cause an interruption to
to the authentication process.

 Link to this type

 authentication_status()

 @type authentication_status() ::
 :not_started
 | :pending
 | :rejected_host_check
 | :rejected_rate_limited
 | :rejected_validation
 | :rejected_identity_expired
 | :rejected_deadline_expired
 | :rejected
 | :authenticated

The understood life-cycle states of the authentication process.
Any authentication process will exist in one of the states defined by the
list below. The list is used to populate the status field of the
t:authentication_state/0 type.
Note that while the authentication process may provide the caller information
regarding the nature of any rejection, the developer should nonetheless make
well considered judgements regarding what, if any, detail to disclose to the
user attempting authentication. More often than not no specificity for a
rejection should be given.
	:not_started - the authentication process has not yet begun.

	:pending - the authentication process is underway. It is possible for
a call to an authentication function to return a :pending authentication
state status. In these cases the authentication has been interrupted and
requires intervention to proceed.

	:rejected_host_check - the authentication process has rejected the
authentication attempt because the apparent Host IP Address is not allowed
to authenticate as presented.

	:rejected_rate_limited - the authentication process has rejected the
authentication attempt because the identifier has failed to successfully
authenticate within the prescribed number of tries within a prescribed
duration.

	:rejected_validation - the authentication process has rejected the
authentication attempt because the identity used to identify the Access
Account is subject to prior validation/confirmation by the Access Account
holder. This is the case with newly created Email Identities, for example.

	:rejected_identity_expired - the authentication process has rejected the
authentication attempt because the Identity record used to identity the
Access Account is beyond its configured expiration date and may not be use
again until the Identity's expiration has been reset. Note that not all
Identity records expire.

	:rejected_deadline_expired - the authentication process is rejected
because it has taken too long to resolve to a final authentication status.

	:rejected - the authentication process has rejected the authentication
attempt for undeclared reasons. Examples of reasons that can prompt this
authentication end state are a user providing a wrong password or no
Instance to access being identified.

	:authenticated - the authentication process has finished successfully
and the Access Account is now authenticated for the identified Instance.

 Link to this type

 authenticator_types()

 @type authenticator_types() :: :email_password | :api_token

The supported types of authentication.
Though the system separates out the notion of what Identities & Credentials
are, there are nonetheless matched pairs of identities/credentials which the
system treat as a unit. This type encapsulates those functional combinations
making it easier for code to communicate intentions while avoiding invalid
combinations of Identity/Credential Types.

 Link to this type

 credential()

 @type credential() :: String.t()

Defines the type expected for user provided plaintext Credentials.

 Link to this type

 credential_confirm_result()

 @type credential_confirm_result() ::
 {credential_confirm_state(), [credential_extended_state()]}

Used to define the return value of an attempted Credential Confirmation.
Attempting to confirm a user provided Credential returns a tuple where the
first element is an indication of whether or not a valid Credential was
supplied by the user and the second element is a list of extended states which
might indicate that additional processing is required even if the Credential
is successfully confirmed. If no additional processing is required the second
element will simply be an empty list.

 Link to this type

 credential_confirm_state()

 @type credential_confirm_state() :: :confirmed | :no_credential | :wrong_credential

Defines the possible outcomes of an attempt to confirm a user provided
Credential.
This type is used to set the available values of the first element of the
credential_confirm_result/0 tuple.
	:confirmed - the Credential provided by the user is confirmed as being
correct.

	:no_credential - no matching Credential record of the correct type was
found for the Access Account.

	:wrong_credential - the user provided Credential does not match the
stored Credential record for that Access Account.

While outcomes other than confirm give some information to the caller, the
specific reason for the failure should usually not be disclosed to the user
attempting authentication; users should just see a binary confirmed/
unconfirmed state without additional details regarding a failure.

 Link to this type

 credential_extended_state()

 @type credential_extended_state() :: :require_mfa | credential_reset_reason()

Known extended Credential confirmation states indicating required post-
confirmation actions.
This type defines the values which may appear in a list as the second element
of credential_confirm_result/0.
	:require_mfa - when present this value indicates that even though a
Credential confirmation succeeded, an additional multi-factor credential
confirmation is required prior to the authentication attempt resulting in
an authenticated status. This will be true when the Access Account has
one or more configured MFA Credentials and the primary Authenticator is one
that supports MFA Credential confirmation (e.g. Password Credentials support
MFA Credential confirmation).

Additional states that can be represented as extended states here include the
Credential reset related reasons defined in credential_reset_reason/0.

 Link to this type

 credential_id()

 @type credential_id() :: Ecto.UUID.t()

Defines the Credential record ID type.

 Link to this type

 credential_params()

 @type credential_params() :: %{
 optional(:access_account_id) => access_account_id(),
 optional(:access_account_name) => access_account_name(),
 optional(:credential_type_id) => credential_type_id(),
 optional(:credential_type_name) => credential_type_name(),
 optional(:credential_for_identity_id) => identity_id(),
 optional(:credential_data) => binary()
}

A type to facilitate data maintenance operations related to Credential
records.

 Attributes

	access_account_id - identifies the Access Account to which the
Credential pertains as identified by its record ID.

	access_account_name - an alternative method of using the Access Account
internal name to identify the Access Account.

	credential_type_id - the record ID of the Credential Type which
classifies the Credential record.

	credential_type_name - an alternative method of identifying the
Credential Type using its Internal Name.

	credential_for_identity_id - certain Credentials are only valid when
used in conjunction with specific Identity records. This value records the
record ID of the Identity record to which the Credential record belongs.

	credential_data - the hashed or encrypted value of the Credential. The
specific details of what is stored in this value will depend on the method
used to secure the Credential, but the most typical scenario includes both
the credential hash and the record specific salting value used in creating
the hash.

 Link to this type

 credential_reset_reason()

 @type credential_reset_reason() :: :reset_forced | :reset_age | :reset_disallowed

Provides additional Credential Extended State values when Credential resets
are required.
These values are related in that they all deal with a primary Credential reset
being required and describe the reason for such a requirement. This is
information useful to users that must take action.
Note that currently the only Credential type that may require Credential reset
is the Password Credential Type.
	reset_forced - the reset is required because it has been
administratively forced. See the force_reset field of
Msdata.SystCredentials for more.

	reset_age - the Password Credential has exceeded the applicable Max Age
Password Rule and must be updated.

	reset_disallowed - the password used in the Credential has been found to
be included in the Disallowed Passwords list and may no longer be used for
authentication.

 Link to this type

 credential_set_failures()

 @type credential_set_failures() ::
 {:invalid_credential, Keyword.t(password_rule_violations())}

A extended return value used when Credentials setting operations have failed.
This type allows the reason for failure to be communicated. This will most
often be when a candidate password has failed the effective Password Rule and
will describe which specific Password Rules have been violated.

 Link to this type

 credential_type_functional_types()

 @type credential_type_functional_types() ::
 :credential_types_password
 | :credential_types_mfa_totp
 | :credential_types_mfa_totp_recovery_code
 | :credential_types_mfa_known_host
 | :credential_types_token_api
 | :credential_types_token_validation
 | :credential_types_token_recovery

Established classes of Credential Types which share common system
functionality.
	:credential_types_password - used to identify Credential Types which
use passwords as their credential.

	:credential_types_mfa_totp - associates a Credential Type with Time
based One Time Password Multi-Factor Authentication functionality.

	:credential_types_mfa_totp_recovery_code - designates a Credential Type
as representing an MFA/TOTP recovery code.

	:credential_types_mfa_known_host - designates a Credential Type
as representing a known MFA/TOTP host allowed to bypass interactive MFA
secondary authentication.

	:credential_types_token_api - indicates that the Credential Type makes
use of API Token credential functionality.

	:credential_types_token_validation - indicates that the Credential Type
facilitates the validation of certain types of Identity records.

	:credential_types_token_recovery - associates Credential Types which
facilitate recovery of other Credential Types with the necessary recovery
functionality.

 Link to this type

 credential_type_id()

 @type credential_type_id() :: MscmpSystEnums.Types.enum_item_id()

The Credential Type record ID database type.

 Link to this type

 credential_type_name()

 @type credential_type_name() :: MscmpSystEnums.Types.enum_item_name()

Defines the expected type of the Credential Type record Internal Name.

 Link to this type

 credential_types()

 @type credential_types() ::
 :credential_types_sysdef_password
 | :credential_types_sysdef_mfa_totp
 | :credential_types_sysdef_mfa_totp_recovery_code
 | :credential_types_sysdef_mfa_known_host
 | :credential_types_sysdef_token_api
 | :credential_types_sysdef_token_validation
 | :credential_types_sysdef_token_recovery

The Credential Types known by the system.

 Link to this type

 disallowed_host_id()

 @type disallowed_host_id() :: Ecto.UUID.t()

The Disallowed Host record ID database type.

 Link to this type

 global_network_rule_params()

 @type global_network_rule_params() :: %{
 optional(:ordering) => pos_integer(),
 optional(:functional_type) => network_rule_functional_type() | String.t(),
 optional(:ip_host_or_network) => MscmpSystDb.DbTypes.Inet.t(),
 optional(:ip_host_range_lower) => MscmpSystDb.DbTypes.Inet.t(),
 optional(:ip_host_range_upper) => MscmpSystDb.DbTypes.Inet.t()
}

Defines the available parameters for use in creating or updating Global
Network Rule records.

 Attributes

	ordering - the order in which the new record should apply relative to
other Global Network Rule records. lower ordering values take precedence
over higher ordering values. If the ordering value in the parameters
matches the ordering value of an existing Global Network Rule record, the
inserted record will be treated as an "insert before" record, with the
existing records being reordered to be after the new record, recursively.
This attribute is required in record creation scenarios.

	functional_type - defines what action the rule specifies once matched.
The possible functional types are :allow which means the rule intends to
explicitly allow the associated IP Address(es) to attempt authentication
or :deny which explicitly prevents the IP Address(es) from attempting
an authorization. This attribute is required in record creation scenarios.

	ip_host_or_network - a single Host IP Address or a single CIDR network
used in matching user Host IP Addresses to rules. Note that if this value
is provided that the ip_host_range_lower and ip_host_range_upper
values must be nil or not provided.

	ip_host_range_lower - defines the lower bound of a simple range of IP
Addresses, inclusive, to which rule should apply. When this value is
provided the ip_host_range_upper attribute must also be provided and the
ip_host_or_network attribute value must be nil or not provided.

	ip_host_range_upper - defines the upper bound of a simple range of IP
Addresses, inclusive, to which rule should apply. When this value is
provided the ip_host_range_lower attribute must also be provided and the
ip_host_or_network attribute value must be nil or not provided.

Note that either the ip_host_or_network attribute or the
ip_host_range_lower and ip_host_range_upper are required and exclusive.

 Link to this type

 host_address()

 @type host_address() :: MscmpSystNetwork.Types.addr_structs()

Defines the data type and structure of Host IP Addresses.

 Link to this type

 identity_id()

 @type identity_id() :: Ecto.UUID.t()

Establishes the data type of the Identity record ID.

 Link to this type

 identity_params()

 @type identity_params() :: %{
 optional(:access_account_id) => access_account_id(),
 optional(:access_account_name) => access_account_name(),
 optional(:identity_type_id) => identity_type_name(),
 optional(:identity_type_name) => identity_type_name(),
 optional(:account_identifier) => account_identifier(),
 optional(:validated) => DateTime.t() | nil,
 optional(:validates_identity_id) => identity_id() | nil,
 optional(:validation_requested) => DateTime.t() | nil,
 optional(:identity_expires) => DateTime.t() | nil,
 optional(:external_name) => String.t() | nil
}

Defines a map of attributes for use in Identity record Changeset processing.

 Attributes

	access_account_id - the record ID of the Access Account for which the
record is being defined.

	access_account_name - an alternative means of selecting the Access
Account using its Internal Name value.

	identity_type_id - the record ID of the Identity Type of the Identity.

	identity_type_name - an alternative means of selecting the Identity Type
of the record using the Identity Type Internal Name value.

	account_identifier - the identifier presented by the Access Account
holder to identify their Access Account. For example, for Email Identities
this value would be the Access Account holder's email address.

	validated - this value indicates both that the Identity record
is valid for use in identification requests and the timestamp at which that
valid condition came into effect. When nil, the Identity record is not
valid to use for identifying Access Accounts.

	validates_identity_id - if the Identity record is of type
identity_types_sysdef_validation this value will reference the record
which is to be validated on confirmation of the validation request. In all
other instances the value should be nil.

	validation_requested - if the Identity record is of type
identity_types_sysdef_validation this value will record the timestamp when
the validation was requested.

	identity_expires - the optional timestamp of when the Identity record
expires and after which the Identity record may not be used for
identification purposes. If this value is nil, the Identity record may be
used indefinitely.

	external_name - certain Identities, such as API Token Identities, allow
the Access Account holder to provide names with which they will more easily
recognize in maintenance tasks. This value allows for the establishment of
a user defined name for the Identity record. Note that this value does not
need to be unique on any basis and therefore is unsuitable for use in
looking up Identity records.

 Link to this type

 identity_type_functional_types()

 @type identity_type_functional_types() ::
 :identity_types_email
 | :identity_types_account
 | :identity_types_api
 | :identity_types_validation
 | :identity_types_password_recovery

Identifies the categorizations of Identity Types which the system will treat
with different functional responses.
	:identity_types_email - indicates that the Identity Type represents
Identities which can be used in email address contexts.

	:identity_types_account - designates Identity Types which are used for
simple identification and are not typically used for Access Account
identification for authentication purposes.

	:identity_types_api - associates API Token Identity functionality with
Identity Types.

	:identity_types_validation - indicates that an Identity Type designates
Identities used to validate other Identity Types, such as
:identity_types_email Identity Types.

	:identity_types_password_recovery - designates Identity Types use in
Password Credential recovery.

 Link to this type

 identity_type_id()

 @type identity_type_id() :: MscmpSystEnums.Types.enum_item_id()

Defines the Identity Type record ID data type.

 Link to this type

 identity_type_name()

 @type identity_type_name() :: MscmpSystEnums.Types.enum_item_name()

Defines the expected data type of the Identity Type record Internal Name
value.

 Link to this type

 identity_types()

 @type identity_types() ::
 :identity_types_sysdef_email
 | :identity_types_sysdef_account
 | :identity_types_sysdef_api
 | :identity_types_sysdef_validation
 | :identity_types_sysdef_password_recovery

Defines the list of Identity Types known to the system.

 Link to this type

 instance_network_rule_params()

 @type instance_network_rule_params() ::
 %{
 optional(:instance_id) => MscmpSystInstance.Types.instance_id(),
 optional(:instance_name) => MscmpSystInstance.Types.instance_name(),
 optional(:ordering) => pos_integer(),
 optional(:functional_type) => network_rule_functional_type() | String.t(),
 optional(:ip_host_or_network) => MscmpSystDb.DbTypes.Inet.t(),
 optional(:ip_host_range_lower) => MscmpSystDb.DbTypes.Inet.t(),
 optional(:ip_host_range_upper) => MscmpSystDb.DbTypes.Inet.t()
 }
 | nil

Defines the available parameters for use in creating or updating Instance
Network Rule records.

 Attributes

	instance_id - the value of this attribute identifies the Instance for
which the Network Rule is being defined. This value doesn't have to be set
explicitly when using the MscmpSystAuthn module API as the API
calls set this value based on the function instance_id parameters they
require.

	instance_name - an alternate means of identifying the Instance instead
of the instance_id attribute. Currently there is no API which makes use
of this value.

	ordering - the order in which the new record should apply relative to
other Instance Network Rule records. lower ordering values take
precedence over higher ordering values. If the ordering value in the
parameters matches the ordering value of an existing Instance Network Rule
record, the inserted record will be treated as an "insert before" record,
with the existing records being reordered to be after the new record,
recursively. This attribute is required in record creation scenarios.

	functional_type - defines what action the rule specifies once matched.
The possible functional types are :allow which means the rule intends to
explicitly allow the associated IP Address(es) to attempt authentication
or :deny which explicitly prevents the IP Address(es) from attempting
an authorization. This attribute is required in record creation scenarios.

	ip_host_or_network - a single Host IP Address or a single CIDR network
used in matching user Host IP Addresses to rules. Note that if this value
is provided that the ip_host_range_lower and ip_host_range_upper
values must be nil or not provided.

	ip_host_range_lower - defines the lower bound of a simple range of IP
Addresses, inclusive, to which rule should apply. When this value is
provided the ip_host_range_upper attribute must also be provided and the
ip_host_or_network attribute value must be nil or not provided.

	ip_host_range_upper - defines the upper bound of a simple range of IP
Addresses, inclusive, to which rule should apply. When this value is
provided the ip_host_range_lower attribute must also be provided and the
ip_host_or_network attribute value must be nil or not provided.

Note that either the ip_host_or_network attribute or the
ip_host_range_lower and ip_host_range_upper are required and exclusive.

 Link to this type

 network_rule_functional_type()

 @type network_rule_functional_type() :: :allow | :deny

Establishes the two basic operations that Network Rule may define.
	:allow - this essentially whitelists any host IP address(es) or networks
defined by the Network Rule, allowing an authentication attempt.

	:deny - this value denies any specified host IP address(es) or networks
from attempting an authentication.

 Link to this type

 network_rule_precedence()

 @type network_rule_precedence() ::
 :disallowed | :global | :instance | :instance_owner | :implied

The known precedence classes of Network Rule definitions.
Network Rules are applied in order of their Precedence Class and then of their
ordering value withing the Precedence Class; first matching found becomes the
Applied Network Rule.
Each Precedence Class is a group of rules defined within the same scope of
applicability which can range from being globally applicable to applying only
to a single Instance. The known Precedence Classes in order of application
are:
	:disallowed - disallowed hosts are individual host IP addresses which
are denied access on a global basis, effectively banning their use with the
system. Defined by Msdata.SystDisallowedHosts.

	:global - Network Rules which are defined to apply global without regard
to Owner or Instance. Such rules may explicitly whitelist or blacklist
hosts. Defined by Msdata.SystGlobalNetworkRules.

	:instance - Network Rules which apply to only a specific Application
Instance. Defined by Msdata.SystInstanceNetworkRules.

	:instance_owner - Network Rules which apply to all Application Instances
belonging to a specific Owner. Defined by
Msdata.SystOwnerNetworkRules.

	:implied - when no explicitly defined applicable Disallowed Host or
Network Rule records can be found, the system will use an implicit globally
applied rule to Apply to the authentication attempt. The :implied rule
allows any host to attempt authentication.

 Link to this type

 owner_network_rule_params()

 @type owner_network_rule_params() :: %{
 optional(:owner_id) => MscmpSystInstance.Types.owner_id(),
 optional(:owner_name) => MscmpSystInstance.Types.owner_name(),
 optional(:ordering) => pos_integer(),
 optional(:functional_type) => network_rule_functional_type() | String.t(),
 optional(:ip_host_or_network) => MscmpSystDb.DbTypes.Inet.t(),
 optional(:ip_host_range_lower) => MscmpSystDb.DbTypes.Inet.t(),
 optional(:ip_host_range_upper) => MscmpSystDb.DbTypes.Inet.t()
}

Defines the available parameters for use in creating or updating Owner
Network Rule records.

 Attributes

	owner_id - the value of this attribute identifies the Owner for which
the Network Rule is being defined. This value doesn't have to be set
explicitly when using the MscmpSystAuthn module API as the API
calls set this value based on the function owner_id parameters they
require.

	owner_name - an alternate means of identifying the Owner instead of the
owner_id attribute. Currently there is no API which makes use of this
value.

	ordering - the order in which the new record should apply relative to
other Owner Network Rule records. lower ordering values take precedence
over higher ordering values. If the ordering value in the parameters
matches the ordering value of an existing Owner Network Rule record, the
inserted record will be treated as an "insert before" record, with the
existing records being reordered to be after the new record, recursively.
This attribute is required in record creation scenarios.

	functional_type - defines what action the rule specifies once matched.
The possible functional types are :allow which means the rule intends to
explicitly allow the associated IP Address(es) to attempt authentication
or :deny which explicitly prevents the IP Address(es) from attempting
an authorization. This attribute is required in record creation scenarios.

	ip_host_or_network - a single Host IP Address or a single CIDR network
used in matching user Host IP Addresses to rules. Note that if this value
is provided that the ip_host_range_lower and ip_host_range_upper
values must be nil or not provided.

	ip_host_range_lower - defines the lower bound of a simple range of IP
Addresses, inclusive, to which rule should apply. When this value is
provided the ip_host_range_upper attribute must also be provided and the
ip_host_or_network attribute value must be nil or not provided.

	ip_host_range_upper - defines the upper bound of a simple range of IP
Addresses, inclusive, to which rule should apply. When this value is
provided the ip_host_range_lower attribute must also be provided and the
ip_host_or_network attribute value must be nil or not provided.

Note that either the ip_host_or_network attribute or the
ip_host_range_lower and ip_host_range_upper are required and exclusive.

 Link to this type

 password_rule_params()

 @type password_rule_params() :: %{
 optional(:owner_id) => MscmpSystInstance.Types.owner_id() | nil,
 optional(:owner_name) => MscmpSystInstance.Types.owner_name() | nil,
 optional(:password_length) => MscmpSystDb.DbTypes.IntegerRange.t(),
 optional(:max_age) => MscmpSystDb.DbTypes.Interval.t(),
 optional(:require_upper_case) => non_neg_integer(),
 optional(:require_lower_case) => non_neg_integer(),
 optional(:require_numbers) => non_neg_integer(),
 optional(:require_symbols) => non_neg_integer(),
 optional(:disallow_recently_used) => non_neg_integer(),
 optional(:disallow_compromised) => boolean(),
 optional(:require_mfa) => boolean(),
 optional(:allowed_mfa_types) => [String.t()]
}

A map of attributes used to create or update Global and Owner Password Rules.
Note that only those attributes which are necessary to represent the desired
rules are required to appear in the parameter submission. All attributes not
provided will take on a default value which assumes the specific rule has no
effect.

 Attributes

	password_length - A value of type MscmpSystDb.DbTypes.IntegerRange.t/0
describing the password length in terms of the number of characters. The
lower bound defines the minimum number of characters a password may have and
the upper bound is the most characters that can be added to password.

	max_age - A value of type MscmpSystDb.DbTypes.Interval.t/0
which, when added to the last_updated value of the Password Credential
record, sets the expiration date of the password. After the password's age
has exceeded it's max age, the password must be reset prior to finalizing
authentication. A zero interval value here means that password ages are not
checked. The zero interval is the default setting.

	require_upper_case - A positive integer which sets the minimum number
of upper case characters that a valid password must posses. A setting of
zero here disables the requirement.

	require_lower_case - A positive integer which sets the minimum number
of lower case characters that a valid password must posses. A setting of
zero here disables the requirement.

	require_numbers - A positive integer which sets the minimum number
of number characters that a valid password must posses. A setting of zero
here disables the requirement.

	require_symbols - A positive integer which sets the minimum number
of symbol characters that a valid password must posses. A setting of zero
here disables the requirement.

	disallow_recently_used - A positive integer representing the number of
most recently used passwords to track and prohibit from re-use. A zero
setting for this attribute indicates that recently used passwords should not
be tracked or prohibited.

	disallow_compromised - A boolean value which, if true, indicates that
any new password requested by a user be first checked against the Disallowed
Passwords list and, if found on the list, rejected for use. When set true,
the system will also check the password against the Disallowed Password list
on authentication; if found on the list at authentication time, the user
will be required to reset their password to something value not otherwise
disallowed. If set false the Disallowed Password list is not checked.

	require_mfa - A boolean value which indicates if multi-factor
authentication is required for password authentication. If true MFA is
required, otherwise MFA is per user preference. MFA may not be completely
disabled.

	allowed_mfa_types - A list of strings identifying the allowed second
factor methods. Currently only MFA type credential_types_secondary_totp is
available.

 Link to this type

 password_rule_violations()

 @type password_rule_violations() ::
 {:password_rule_length_min, pos_integer()}
 | {:password_rule_length_max, pos_integer()}
 | {:password_rule_required_upper, pos_integer()}
 | {:password_rule_required_lower, pos_integer()}
 | {:password_rule_required_numbers, pos_integer()}
 | {:password_rule_required_symbols, pos_integer()}
 | {:password_rule_disallowed_password, true}
 | {:password_rule_recent_password, true}

Defines the known Password Rule violations.
Various functions evaluation a candidate password against the set of
applicable Password Rules and return lists of violations for resolution. The
possible violations are:
	:password_rule_length_min - the candidate password violates the minimum
password length rule. The accompanying value is the required number of
characters the password must contain.

	:password_rule_length_max - the candidate password violates the maximum
password length rule. The accompanying value is the maximum permitted
number of characters that the password may contain.

	:password_rule_required_upper - the candidate password violates the
minimum upper case characters rule. The accompanying value is the required
number of upper case characters.

	:password_rule_required_lower - the candidate password violates the
minimum lower case characters rule. The accompanying value is the required
number of lower case characters.

	:password_rule_required_numbers - the candidate password violates the
minimum number characters rule. The accompanying value is the required
number of number characters.

	:password_rule_required_symbols - the candidate password violates the
minimum symbol characters rule. The accompanying value is the required
number of symbol characters.

	:password_rule_disallowed_password - the candidate password is known
password which is disallowed from use in the system. A new allowed password
must be selected.

	:password_rule_recent_password - the candidate password has been too
recently used for this Access Account and another not recently used password
must be selected.

MscmpSystAuthn.Types.AppliedNetworkRule

Represents the return value of functions which evaluate whether or not a
specific originating host IP address is allowed to attempt an authentication.
When an authentication is attempted, a number of different rules and data
sources may determine what kind of connection is allowed based on the host IP
address from which the attempt appears to be originating and the destination
Instance for which the authentication is being processed. To normalize the
return from the evaluation of these different network based evaluations we
define a simplified t:applied_network_rule/0 value to represent the
actionable data of the evaluation.

 Summary

 Types

 t()

 Represents the return value of functions which evaluate whether or not a
specific originating host IP address is allowed to attempt an authentication.

 Types

 Link to this type

 t()

 @type t() :: %MscmpSystAuthn.Types.AppliedNetworkRule{
 functional_type: MscmpSystAuthn.Types.network_rule_functional_type(),
 network_rule_id: Ecto.UUID.t() | nil,
 precedence: MscmpSystAuthn.Types.network_rule_precedence()
}

Represents the return value of functions which evaluate whether or not a
specific originating host IP address is allowed to attempt an authentication.

 Attributes

	precedence - this will indicate the precedence of the applied Network
Rule. This value can aid in identifying the origin of a given applied
allowance or denial.

	network_rule_id - this is the record ID of the rule which was evaluated
to govern the authentication attempt. Which specific relation the ID refers
to will depend on the specific precedence of the rule applied. This value
may be nil if the implied default Network Rule is applied since, by
definition, this means no other explicitly defined Network Rule was found.

	functional_type - May be either :allow or :deny. :allow means
that the Network Rule evaluation allows the host IP address to attempt
authentication. :deny indicates that the host IP address may not attempt
an authentication.

See MscmpSystAuthn.Types.AppliedNetworkRule for more.

MscmpSystAuthn.Types.AuthenticationState

The return type describing the result of authentication attempts via the
authentication functions.
When a user attempts to validate an Access Account, the result is returned as
a value of this type. This includes whether or not an authentication attempt
was successful or rejected.
A result indicating that the status is pending may also be returned from an
attempt if the authentication requires intervention to complete successfully.

 Summary

 Types

 t()

 The return type describing the result of authentication attempts via the
authentication functions.

 Types

 Link to this type

 t()

 @type t() :: %MscmpSystAuthn.Types.AuthenticationState{
 access_account_id: MscmpSystAuthn.Types.access_account_id() | nil,
 applied_network_rule: MscmpSystAuthn.Types.AppliedNetworkRule.t() | nil,
 deadline: DateTime.t(),
 host_address: MscmpSystAuthn.Types.host_address(),
 identifier: MscmpSystAuthn.Types.account_identifier(),
 identity: Msdata.SystIdentities.t() | nil,
 identity_id: MscmpSystAuthn.Types.identity_id() | nil,
 identity_type_id: MscmpSystAuthn.Types.identity_type_id() | nil,
 instance_id: MscmpSystInstance.Types.instance_id() | :bypass | nil,
 owning_owner_id: MscmpSystInstance.Types.owner_id() | nil,
 pending_operations: [MscmpSystAuthn.Types.authentication_operations()],
 plaintext_credential: MscmpSystAuthn.Types.credential() | nil,
 reset_reason: MscmpSystAuthn.Types.credential_reset_reason() | nil,
 status: MscmpSystAuthn.Types.authentication_status()
}

The return type describing the result of authentication attempts via the
authentication functions.

 Attributes

	status - the result of the authentication attempt.

	deadline - the date/time by which the authentication attempt must be
resolved by before being considered expired. Since the authentication
process may be interrupted and resumed, it requires that we establish some
limit by which the process must be completed. By default this value will be
5 minutes after the time the authentication process starts.

	access_account_id - the Access Account record ID if the authentication
attempt has successfully completed the identification operation.

	instance_id - the Instance ID that the Access Account holder is
attempting to authenticate to. For certain authentication types, this value
may initially be nil for later resolution to a specific instance. In some
special cases, authentication may not be contextually bound to a specific
Instance. In this cases, the special value :bypass can be used it
indicate that the Instance is not relevant for the authentication.

	identity_type_id - the record ID referencing the Identity Type used to
identify the Access Account.

	host_address - the apparent Host IP Address from which the
authentication attempt originated.

	applied_network_rule - the Network Rule that was applied during the
authentication attempt. This value may be nil if the evaluation of the
Network Rules has not yet made.

	pending_operations - the ordered list of remaining authentication
operations which must complete successfully prior to the authentication
being successfully completed.

	identifier - the user supplied account identifier used to identify the
Access Account.

	plaintext_credential - the unencrypted, user supplied credential to
test during the authentication process. This value will be made nil as
soon as it has been tested or is created nil for the Account Code
Authenticator which isn't a true authentication method (it's just a lookup).

	owning_owner_id - an Owner record ID for the Owner which manages the
authenticating Access Account in cases where it's an Owned Access Account.

	identity_id - the record ID of the Identity record located to identify
the Access Account.

	identity - the Identity record data struct. This should be the same
record as that identified by the identity_id attribute

	reset_reason - in cases where a pending operation of
:require_credential_reset is added to the authentication process, this
value indicates the reason for the reset. Available values are defined in
t:credential_reset_reason/0.

See MscmpSystAuthn.Types.AuthenticationState for more.

MscmpSystAuthn.Types.AuthenticatorResult

Represents the returned data values that were generated by the Authenticator
creation process.
The included values and attributes will vary somewhat from Authenticator type
to Authenticator type, but they will all follow this basic form.

 Important!

Some Authenticator types, such as Validation and Recovery, provide
values using this struct which are both security sensitive and not
recoverable once discarded.

 Summary

 Types

 t()

 Represents the returned data values that were generated by the Authenticator
creation process.

 Types

 Link to this type

 t()

 @type t() :: %MscmpSystAuthn.Types.AuthenticatorResult{
 access_account_id: MscmpSystAuthn.Types.access_account_id(),
 account_identifier: MscmpSystAuthn.Types.account_identifier(),
 credential: MscmpSystAuthn.Types.credential(),
 validation_credential: MscmpSystAuthn.Types.credential_id() | nil,
 validation_identifier: MscmpSystAuthn.Types.account_identifier() | nil
}

Represents the returned data values that were generated by the Authenticator
creation process.

 Attributes

	access_account_id - the Access Account record ID for which the
Authenticator has been created.

	account_identifier - the Access Account Identifier for use in
identifying the Access Account in the authentication process. Depending on
the Authenticator type, this could be a restatement of what the user
provided, such as an Email address, or may be system generated such as the
identifier for user with an API Token.

	credential - the plaintext Credential created for the Authenticator.
This attribute is only returned in cases where the typical Authenticator
creation flow includes the system randomly generating the Credential. For
example, an API Token Credential is automatically created by the system and
the Credential must be communicated to the user once created. Note that
even in these cases the only time the Credential is available for disclosure
to the user is immediately after the Authenticator creation via this value.
Once the return result is discarded the Credential is unrecoverable.

	validation_identifier - when creating an Email/Password Authenticator,
the default options mandate that validating the Email Identity is required.
Assuming the default is not overridden, the system generated Identifier for
the user to use to validate the Email Identity is provided via this
attribute. If validation is not required this attribute will not be present
in the return value of the Authenticator creation call.

	validation_credential - the (usually) system generated Credential in
plaintext which compliments the validation_identifier value. This
attribute is either included or excluded on the same terms as the
validation_identifier. Note that the return of this value after
the creation of an Email/Password Authenticator is the only time that this
value is available in plaintext; after this point the plaintext is not
retrievable.

See MscmpSystAuthn.Types.AuthenticatorResult for more.

MscmpSystAuthn.Types.PasswordRules

Defines a generic Password Rule record allowing Password Rules originating
from different database sources a common representation.
Password Rules are defined in two different database tables,
Msdata.SystGlobalPasswordRules and
Msdata.SystOwnerPasswordRules. This type defines a
common representation of Password Rule data for those parts of the system that
apply Password Rules after the applicable Password Rules have been resolved.

 Summary

 Types

 t()

 Defines a generic Password Rule record allowing Password Rules originating
from different database sources a common representation.

 Types

 Link to this type

 t()

 @type t() :: %MscmpSystAuthn.Types.PasswordRules{
 access_account_id: MscmpSystAuthn.Types.access_account_id() | nil,
 allowed_mfa_types: [String.t()],
 disallow_compromised: boolean(),
 disallow_recently_used: non_neg_integer(),
 max_age: MscmpSystDb.DbTypes.Interval.t(),
 owner_id: MscmpSystInstance.Types.owner_id() | nil,
 password_length: MscmpSystDb.DbTypes.IntegerRange.t(),
 require_lower_case: non_neg_integer(),
 require_mfa: boolean(),
 require_numbers: non_neg_integer(),
 require_symbols: non_neg_integer(),
 require_upper_case: non_neg_integer()
}

Defines a generic Password Rule record allowing Password Rules originating
from different database sources a common representation.

 Attributes

	access_account_id - the Access Account for which the effective Password
Rules has been resolved.

	owner_id - the Owner record ID of the Owner which owns the Access
Account. The Access Account's Owner may have established Password Rules
which would apply to the Access Account. A value here does not mean that
the Owner's rules necessarily are part of the resolved Password Rule, just
that they would have been considered.

	password_length - the resolved value of type
MscmpSystDb.DbTypes.IntegerRange.t/0 describing the password
length in terms of the number of characters. The lower bound defines the
minimum number of characters a password may have and the upper bound is the
most characters that can be added to password.

	max_age - the resolved value of type MscmpSystDb.DbTypes.Interval.t/0
which, when added to the last_updated value of the Password Credential
record, sets the expiration date of the password. After the password's age
has exceeded it's max age, the password must be reset prior to finalizing
authentication. A zero interval value here means that password ages are not
checked. The zero interval is the default setting.

	require_upper_case - the resolved minimum number of upper case
characters that a valid password must posses. A setting of zero here
disables the requirement.

	require_lower_case - the resolved minimum number of lower case
characters that a valid password must posses. A setting of zero here
disables the requirement.

	require_numbers - the resolved minimum number of number characters that
a valid password must posses. A setting of zero here disables the
requirement.

	require_symbols - the resolved minimum number of symbol characters that
a valid password must posses. A setting of zero here disables the
requirement.

	disallow_recently_used - A positive integer representing the number of
most recently used passwords to track and prohibit from re-use. A zero
setting for this attribute indicates that recently used passwords should not
be tracked or prohibited.

	disallow_compromised - A boolean value which, if true, indicates that
any new password requested by a user be first checked against the Disallowed
Passwords list and, if found on the list, rejected for use. When set true,
the system will also check the password against the Disallowed Password list
on authentication; if found on the list at authentication time, the user
will be required to reset their password to something value not otherwise
disallowed. If set false the Disallowed Password list is not checked.

	require_mfa - A boolean value which indicates if multi-factor
authentication is required for password authentication. If true MFA is
required, otherwise MFA is per user preference. MFA may not be completely
disabled.

	allowed_mfa_types - A list of strings identifying the allowed second
factor methods. Currently only MFA type credential_types_secondary_totp is
available.

See MscmpSystAuthn.Types.AuthenticationState for more.

 OEBPS/dist/epub-TCI3LGHF.js
(()=>{var d=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var c="ex_doc:settings",h={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=h,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(c);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._storeSettingsLegacy(),localStorage.setItem(c,JSON.stringify(this._settings))}catch(t){console.error(`Failed to persist settings: ${t}`)}}_loadSettingsLegacy(){localStorage.getItem("tooltipsDisabled")!==null&&(this._settings={...this._settings,tooltips:!1}),localStorage.getItem("night-mode")==="true"&&(this._settings={...this._settings,nightMode:!0}),this._settings.nightMode===!0&&(this._settings={...this._settings,theme:"dark"})}_storeSettingsLegacy(){this._settings.tooltips?localStorage.removeItem("tooltipsDisabled"):localStorage.setItem("tooltipsDisabled","true"),this._settings.nightMode!==null?localStorage.setItem("night-mode",this._settings.nightMode===!0?"true":"false"):localStorage.removeItem("night-mode"),this._settings.theme!==null?(localStorage.setItem("night-mode",this._settings.theme==="dark"?"true":"false"),this._settings.nightMode=this._settings.theme==="dark"):(delete this._settings.nightMode,localStorage.removeItem("night-mode"))}},f=new s;function l(){["warning","info","error","neutral","tip"].forEach(t=>{i(`blockquote h3.${t}, blockquote h4.${t}`).forEach(e=>{e.closest("blockquote").classList.add(t)})})}document.addEventListener("click",function(o){if(window.innerWidth<=768){let t=o.target.closest('a[href^="#"]');if(t){o.preventDefault();let e=t.getAttribute("href").substring(1),n=document.getElementById(e);if(n){let u=n.getBoundingClientRect().top+window.scrollY-45;window.scrollTo({top:u,behavior:"smooth"})}}}});var m="hll";function g(){p()}function p(){i("[data-group-id]").forEach(t=>{let e=t.getAttribute("data-group-id");t.addEventListener("mouseenter",n=>{a(e,!0)}),t.addEventListener("mouseleave",n=>{a(e,!1)})})}function a(o,t){i(`[data-group-id="${o}"]`).forEach(n=>{n.classList.toggle(m,t)})}r(()=>{g(),l()});})();

