

 mscmp_syst_db

 v0.1.0

 Table of contents

 	Modules

 	MscmpSystDb.DbTypes

 	MscmpSystDb.DbTypes.Range

 	MscmpSystDb

 	MscmpSystDb.Types

 	MscmpSystDb.Types.BoundsCompareResult

 	MscmpSystDb.Types.ContextState

 	MscmpSystDb.Types.DatastoreContext

 	MscmpSystDb.Types.DatastoreOptions

 	MscmpSystDb.Types.DbServer

 	MscmpSystDb.DbTypes.DateRange

 	MscmpSystDb.DbTypes.DateTimeRange

 	MscmpSystDb.DbTypes.DecimalRange

 	MscmpSystDb.DbTypes.Inet

 	MscmpSystDb.DbTypes.IntegerRange

 	MscmpSystDb.DbTypes.Interval

 	MscmpSystDb.Datastore

 	MscmpSystDb.DatastoreContext

 	MscmpSystDb.Schema

 	Mix Tasks

 	mix builddb

 	mix dropdb

 	mix loaddb

MscmpSystDb.DbTypes protocol

Defines the common functions which should be implemented for all custom
DbTypes implemented in MscmpSystDb.

 Summary

 Types

 t()

 All the types that implement this protocol.

 Functions

 compare(left, right)

 Compares two values and returns the effective operating describing the
relationship.

 test_compare(left, right, operator)

 Compares two values and tests the resulting effective operator against that
supplied by the user returning true or false.

 Types

 Link to this type

 t()

 @type t() :: term()

All the types that implement this protocol.

 Functions

 Link to this function

 compare(left, right)

 @spec compare(t(), t()) :: MscmpSystDb.Types.db_type_comparison_operators()

Compares two values and returns the effective operating describing the
relationship.
Parameters
	left - a range type or base type for use in the comparison which would
be the left side when used with an infix operator such as >.

	right - a range type or base type for use in the comparison which would
be the right side when used with an infix operator such as >.

Examples
Comparing two ranges where the left and right overlap, but the left side is
less than the right (returns "Less Than Overlapping").
iex> left_range =
...> %MscmpSystDb.DbTypes.IntegerRange{
...> lower: 10,
...> upper: 100
...> }
iex> right_range =
...> %MscmpSystDb.DbTypes.IntegerRange{
...> lower: 20,
...> upper: 200
...> }
iex> MscmpSystDb.DbTypes.compare(left_range, right_range)
:lto
Comparing a range and a base type value where the range contains the base
type value (returns "Left Contains Right").
iex> left_range =
...> %MscmpSystDb.DbTypes.IntegerRange{
...> lower: 10,
...> upper: 100
...> }
iex> MscmpSystDb.DbTypes.compare(left_range, 50)
:lcr
Comparing interval base types where the left is less than the right (returns
"Less Than")
iex> left_interval =
...> %MscmpSystDb.DbTypes.Interval{
...> days: 1
...> }
iex> right_interval =
...> %MscmpSystDb.DbTypes.Interval{
...> months: 1
...> }
iex> MscmpSystDb.DbTypes.compare(left_interval, right_interval)
:lt

 Link to this function

 test_compare(left, right, operator)

 @spec test_compare(t(), t(), MscmpSystDb.Types.db_type_comparison_operators()) ::
 boolean()

Compares two values and tests the resulting effective operator against that
supplied by the user returning true or false.
Parameters
	left - a range type or base type for use in the comparison which would
be the left side when used with an infix operator such as >.

	right - a range type or base type for use in the comparison which would
be the right side when used with an infix operator such as >.

	operator - the desired operator to test.

Examples
Comparing two ranges where the left and right overlap, but the left side is
less than the right. In this case we match the desired "Less Than
Overlapping" operator resulting in a return value of true.
iex> left_range =
...> %MscmpSystDb.DbTypes.IntegerRange{
...> lower: 10,
...> upper: 100
...> }
iex> right_range =
...> %MscmpSystDb.DbTypes.IntegerRange{
...> lower: 20,
...> upper: 200
...> }
iex> MscmpSystDb.DbTypes.test_compare(left_range, right_range, :lto)
true
Comparing a range and a base type value where the range contains the base
type value, but the desired operator is "Greater Than" which does not match
resulting in a return value of false.
iex> left_range =
...> %MscmpSystDb.DbTypes.IntegerRange{
...> lower: 10,
...> upper: 100
...> }
iex> MscmpSystDb.DbTypes.test_compare(left_range, 50, :gt)
false
Comparing interval base types where the intervals are equal and testing for
equality resulting a true result.
iex> left_interval =
...> %MscmpSystDb.DbTypes.Interval{
...> secs: 100
...> }
iex> right_interval =
...> %MscmpSystDb.DbTypes.Interval{
...> secs: 100
...> }
iex> MscmpSystDb.DbTypes.test_compare(left_interval, right_interval, :eq)
true

MscmpSystDb.DbTypes.Range protocol

Defines the common functions which should be implemented for all database
range types.

 Summary

 Types

 t()

 All the types that implement this protocol.

 Functions

 bounds_compare(left, right)

 Compares a range with either a range or related base type and returns a map
indicating the applicable comparison operator for the lower and upper bound
of the range.

 lower(range)

 Extracts and returns the lower bound of a range.

 upper(range)

 Extracts and returns the upper bound of a range.

 Types

 Link to this type

 t()

 @type t() :: term()

All the types that implement this protocol.

 Functions

 Link to this function

 bounds_compare(left, right)

 @spec bounds_compare(any(), any()) :: MscmpSystDb.Types.BoundsCompareResult.t()

Compares a range with either a range or related base type and returns a map
indicating the applicable comparison operator for the lower and upper bound
of the range.

 Examples

Comparing two ranges where both the lower and upper values of the left range
are less than the corresponding values of the right side.
iex> left_range =
...> %MscmpSystDb.DbTypes.IntegerRange{
...> lower: 10,
...> upper: 100
...> }
iex> right_range =
...> %MscmpSystDb.DbTypes.IntegerRange{
...> lower: 20,
...> upper: 200
...> }
iex> MscmpSystDb.DbTypes.Range.bounds_compare(left_range, right_range)
%MscmpSystDb.Types.BoundsCompareResult{lower_comparison: :lt, upper_comparison: :lt}
Comparing a range value on the left side with a base value on the right. In
this case the left side value is less than the right side value, but
equal to the upper left side value.
iex> left_range =
...> %MscmpSystDb.DbTypes.IntegerRange{
...> lower: 10,
...> upper: 100,
...> upper_inclusive: false
...> }
iex> MscmpSystDb.DbTypes.Range.bounds_compare(left_range, 99)
%MscmpSystDb.Types.BoundsCompareResult{lower_comparison: :lt, upper_comparison: :eq}
Comparing two ranges where the right side range is contained by the left side
range. The left side lower bound is less than the right side lower bound and
the left side upper bound is greater than the right side upper bound.
iex> left_range =
...> %MscmpSystDb.DbTypes.IntegerRange{
...> lower: 10,
...> upper: 100,
...> upper_inclusive: false
...> }
iex> right_range =
...> %MscmpSystDb.DbTypes.IntegerRange{
...> lower: 20,
...> upper: 50
...> }
iex> MscmpSystDb.DbTypes.Range.bounds_compare(left_range, right_range)
%MscmpSystDb.Types.BoundsCompareResult{lower_comparison: :lt, upper_comparison: :gt}

 Link to this function

 lower(range)

 @spec lower(any()) :: any()

Extracts and returns the lower bound of a range.
Examples
iex> range =
...> %MscmpSystDb.DbTypes.IntegerRange{
...> lower: 10,
...> upper: 100,
...> upper_inclusive: false
...> }
iex> MscmpSystDb.DbTypes.Range.lower(range)
10

 Link to this function

 upper(range)

 @spec upper(any()) :: any()

Extracts and returns the upper bound of a range.
Examples
iex> range =
...> %MscmpSystDb.DbTypes.DecimalRange{
...> lower: Decimal.new("11.55"),
...> upper: Decimal.new("75.50"),
...> upper_inclusive: false
...> }
iex> MscmpSystDb.DbTypes.Range.upper(range)
%Decimal{coef: 7549, exp: -2, sign: 1}

MscmpSystDb

A database management Component for developing and managing database-per-tenant
oriented systems. To achieve this we wrap and extend the popular Ecto and
EctoSql libraries with a specialized templated (EEx) migrations system and add
additional, opinionated abstractions encapsulating the tenant model as it
relates to development, data access, and runtime concerns.
Important
"Database-per-tenant" is not the typical tenancy implementation pattern for
Elixir/Phoenix based applications. As with most choices in software
architecture and engineering there are trade-offs between the different
tenancy approaches that you should be well-versed with prior to committing to
this or any other tenancy model for your applications.

 Concepts

There are several concepts requiring definitions which should be understood
before continuing. Most of these concepts relate to runtime concerns though
understanding them will inform your sense of the possibilities and constraints
on development and deployment scenarios.
Datastore
A Datastore can most simply be thought of as a single database created to
support either a tenant environment or an administrative function of the
application. More specifically speaking, a Datastore establishes a store of
data and a security boundary at the database level for the data of a tenant or
of administrative functionality.
Using MscmpSystDb.create_datastore/2 automatically will create the database
backing the Datastore.
Datastores and the Ecto dynamic repositories which back them are started and
stopped at runtime using this Component's API. Datastores are not typically
started directly via OTP application related functionality at application
startup. This is chiefly because we don't assume to even know what Datastores
actually exist until we've started up an administrative Datastore which records
the information.
Datastore Context
A Datastore Context represents a PostgreSQL database role which is used to
establish Datastore access and security contexts using database security
features. Datastore Contexts are specific to a single Datastore and are managed
by the this Component, including the creation, maintenance, and dropping of them
as needed, typically in conjunction with Datastore creation/deletion.
Behind the scenes Datastore Contexts use the "Ecto Dynamic Repositories" feature.
Each Datastore Context is backed by an Ecto Dynamic Repo. Starting a Datastore
Context starts its Ecto Dynamic Repo including establishing the connections to
the database. Stopping a Datastore Context shuts that associated Dynamic Repo
down and terminates its database connections.
There are several different kinds of Datastore Contexts which can be defined:
	Owner: This kind of Datastore Context creates a database role to serve
as the database owner of all the database objects backing the Datastore
making it the de facto admin role for the Datastore. While the Owner
Datastore Context owns the database objects backing the Datastore, it is
only a regular database role (no special database rights) and it cannot be a
database login role itself. All Datastores must have exactly one Owner
Datastore Context defined.

	Login: The Login Datastore Context is a regular database role with which
the application can log into the database and perform operations allowed by
the database security policies established by the database developer. There
can be one or more Login Datastore Contexts in order to support various
security profiles that the application may assume or in order to build
connection pools with varying limits depending on some application specific
need (e.g. connections support web user interface vs. connections supporting
external API interactions.). For a Datastore to be useful there must be at
least one Login Datastore Context defined for the Datastore.

	Non-Login: While the Owner Datastore Context is required, there are
other possible scenarios where non-login roles could be useful in managing
access to specific database objects, but how useful Non-Login roles might
be will depend on application specific factors; the expectation is that
their use will be rare. Naturally, there is no requirement for Non-Login
Datastore Contexts to be defined for any Datastore.

Finally, when we access the database from the application we'll always be doing
so identifying one of our Login Datastore Contexts. This is done using
MscmpSystDb.put_datastore_context/1 which behind the scenes is using the
Ecto.Repo dynamic repository features (Ecto.Repo.put_dynamic_repo/1).
Note that there is no default Ecto Repo, dynamic or otherwise, defined in the
system. Any attempts to access a Datastore Context without having established
the current Datastore Context for the process will cause the process to crash.
Warning!
Datastore Contexts are created and destroyed by the application using the API
functions in this Component. The current implementation of Login Datastore
Contexts, however, is expected to have certain security weaknesses related to
database role credential management.
With this in mind, do not look to our implementation as an example of how
to approach such a problem until this and other warnings disappear. The
reality is that while in certain on-premises scenarios our current approach
might well be workable, it was designed with the idea of kicking the can of a
difficult and sensitive problem down the road and not as a final solution that
we'd stand behind. We do believe this problem is solvable with sufficient
time and expertise.

 Database Development

Our development model assumes that there are fundamentally two phases of
development related to the database: Initial/Major Development and
Ongoing Maintenance.
Initial/Major Development
When initially developing a database schema, prior to any releases of usable
software the typical "migrations" oriented development pattern of a continuing
sequence of incremental changes is significantly less useful than it is during
later, maintenance oriented phases of development. During initial development
it is more useful to see database schema changes through the lens of traditional
source control methodologies. The extend to which this is true will naturally
vary depending on the application. Larger, database-centric applications will
benefit from this phase of development significantly more than smaller
applications where the database is simple persistence and data isn't significant
beyond this persistence support role.
Ongoing Maintenance
Once there is an active release of the software and future deployments will be
focused on maintaining already running databases, our model shifts to the norms
typical of the traditional migrations database development model. We expect
smaller, relatively independent changes which are simply applied in sequence.
Unlike other migration tools such as the migrator built into EctoSql, we have
some additional ceremony related to sequencing migrations, but aside from these
minor differences our migrations will resemble those of other tools once in the
maintenance phase of development.
Note
Despite the discussion above, the distinction between "Initial/Major
Development" and "Ongoing Maintenance" is a distinction in developer practice
only; the tool itself doesn't make this distinction but merely is designed to
work in a way which supports a workflow recognizing these phases. The cost of
being able to support the Initial/Major Development concept is that migrations
are not numbered or sequenced automatically as will be shown below. If you
don't need the Initial/Major Development phase, the traditional EctoSql
migrator may be more suitable to your needs.

Source Files & Building Migrations Overview
In the more typical migrations model, the migration files are themselves the
source code of the database changes. This Component separates the two concepts:
	Database source code files are written by the developer as the developer
sees fit. Database source files are what we are most concerned with from a
source control perspective; and these files can be freely modified and
changes committed up to the point that they are built into released
migrations. Database source files are written in (mostly) plain SQL; EEx
tags are allowed in the SQL and can be bound during migration time.

	Once the database source code has reached some stage of completion, the
developer can use the mix builddb task to generate migration files from
the database sources. In order to build the migration files, the developer
will create a TOML "build plan" file which indicates which database source
files to include in the migrations and their sequence. For more about the
build process and build plans see the mix builddb task documentation.

Now let's connect this back to the development phases discussed previously.
During the "Initial/Major Development" phase, we expect that there will be many
database source files and that these files will be written, committed to source
control, modified, and re-committed to source control not as migrations but as
you would any other source file (for example, maybe one file per table.); we
might also be building migration files at this time for testing purposes, but
until the application is released we'd expect the migration files to be cleaned
out and rebuilt. Finally once tests, code, reviews, etc. are complete and a
release is ready to be prepared, a final mix builddb is run to create the
release migrations and those migrations are committed to source control.
From this point forward we generally wouldn't modify the original database
source files or the final release migrations: the release migrations are
essentially set in stone once they may be deployed to a environment where
dropping the database is not an option. Subsequent development in the "Ongoing
Maintenance" phase looks similar to traditional migration development. For any
modification to the database you'll create new a database source file(s) for
those modifications specifically and they'll get new version numbers which will
in turn create new migrations when mix builddb builds them. These will then
be deployed to the database as standard migrations would.

 Migration Deployments

Once built, migration files are deployed to a database similar to the way
traditional migration systems perform their deployments: the migrations are
checked, in migration number order, against a special database table listing the
previously deployed migrations (table ms_syst_db.migrations). If a migration
has been previously deployed, it's skipped and the deployment process moves onto
the next migration; if the migration needs to be deployed it is applied to the
database and, assuming successful deployment, the process moves onto the next
migration or exits when all outstanding migrations have been applied.
Each individual migration is applied in a single database transaction. This
means that if part of a migration fails to apply to the database successfully,
the entire migration is rolled back and the database will be in the state of the
last fully successful migration application. A migration application failure
will abort the migration process, cancelling the attempted application of
migrations after the failed migration.
Unlike the EctoSql based migration process, migrations in MscmpSystDb are
expected to be managed at runtime by the application. There is no external
mix oriented migration deployment process. Migration processes are started
for each tenant database individually allowing for selective application of
migrations to the specified environment or allowing for "upgrade window" style
functionality. Migrations are also EEx templates and template bindings can be
supplied to the migrator to make each deployment specific to the database being
migrated if appropriate. Naturally, much depends on the broader application
design, but the migrator can support a number of different scenarios for
deployment of database changes.
Finally, the migrator, can in a single application, manage and migrate different
database schemas/migration sets depending on the identified "type". This means
that different database schemas for different subsystems can be supported by the
migration system in a single application. This assumes that a single database
is of a single type; that type may be any of the available types, but mixing of
types in a single database is not allowed.

 Custom Database Types

Ecto, EctoSql, and the underlying PostgreSQL library Postgrex offer decent
PostgreSQL data type support out of box, but they don't directly map some of the
database types that can be helpful in business software such as PostgreSQL range
types, internet address types, and interval types. To this end we add some
custom database data types via the modules in the MscmpSystDb.DbTypes.*
namespace.

 Data Access Interface

The Ecto library offers a data access and manipulation API via the Ecto.Repo
module. We wrap and in some cases extend the majority of that functionality in
this Component as documented in the Query section. As a rule of
thumb, you want to call on this module for such needs even if the same can be
achieved with the Ecto library. This recommendation is not meant to suggest
that you shouldn't use the Ecto.Query related DSL or methods for constructing
queries; using the Ecto Query DSL is, in fact, recommended absent compelling
reason to do otherwise.

 Summary

 Query

 aggregate(queryable, aggregate, field, opts \\ [])

 A convenience function that currently wraps the Ecto.Repo.aggregate/4
function.

 all(queryable, opts \\ [])

 A convenience function that currently wraps the Ecto.Repo.all/2 function.

 delete(struct_or_changeset, opts \\ [])

 A convenience function that currently wraps the Ecto.Repo.delete/2
function.

 delete!(struct_or_changeset, opts \\ [])

 A convenience function that currently wraps the Ecto.Repo.delete!/2
function.

 delete_all(queryable, opts \\ [])

 A convenience function that currently wraps the Ecto.Repo.delete_all/2
function.

 exists?(queryable, opts \\ [])

 A convenience function that currently wraps the Ecto.Repo.exists?/2
function.

 get(queryable, id, opts \\ [])

 A convenience function that currently wraps the Ecto.Repo.get/3
function.

 get!(queryable, id, opts \\ [])

 A convenience function that currently wraps the Ecto.Repo.get!/3
function.

 get_by(queryable, clauses, opts \\ [])

 A convenience function that currently wraps the Ecto.Repo.get_by/3
function.

 get_by!(queryable, clauses, opts \\ [])

 A convenience function that currently wraps the Ecto.Repo.get_by!/3
function.

 in_transaction?()

 A convenience function that currently wraps the Ecto.Repo.in_transaction?/0
function.

 insert(struct_or_changeset, opts \\ [])

 A convenience function that currently wraps the Ecto.Repo.insert/2
function.

 insert!(struct_or_changeset, opts \\ [])

 A convenience function that currently wraps the Ecto.Repo.insert!/2
function.

 insert_all(schema_or_source, entries_or_query, opts \\ [])

 A convenience function that currently wraps the Ecto.Repo.insert_all/3
function.

 insert_or_update(changeset, opts \\ [])

 A convenience function that currently wraps the Ecto.Repo.insert_or_update/2
function.

 insert_or_update!(changeset, opts \\ [])

 A convenience function that currently wraps the Ecto.Repo.insert_or_update!/2
function.

 load(module_or_map, data)

 A convenience function that currently wraps the Ecto.Repo.load/2
function.

 one(queryable, opts \\ [])

 A convenience function that currently wraps the Ecto.Repo.one/2
function.

 one!(queryable, opts \\ [])

 A convenience function that currently wraps the Ecto.Repo.one!/2
function.

 preload(structs_or_struct_or_nil, preloads, opts \\ [])

 A convenience function that currently wraps the Ecto.Repo.preload/3
function.

 prepare_query(operation, query, opts \\ [])

 A convenience function that currently wraps the Ecto.Repo.prepare_query/3
function.

 query_for_many(query, query_params \\ [], opts \\ [])

 Executes a database query and returns all rows.

 query_for_many!(query, query_params \\ [], opts \\ [])

 Executes a database query and returns all rows. Raises on error.

 query_for_none(query, query_params \\ [], opts \\ [])

 Executes a database query but returns no results.

 query_for_none!(query, query_params \\ [], opts \\ [])

 Executes a database query but returns no results. Raises on error.

 query_for_one(query, query_params \\ [], opts \\ [])

 Executes a database query and returns a single row.

 query_for_one!(query, query_params \\ [], opts \\ [])

 Executes a database query and returns a single row. Raises on error.

 query_for_value(query, query_params \\ [], opts \\ [])

 Executes a database query returning a single value.

 query_for_value!(query, query_params \\ [], opts \\ [])

 Executes a database query returning a single value. Raises on error.

 record_count(queryable, opts)

 Returns the record count of the given queryable argument.

 reload(struct_or_structs, opts \\ [])

 A convenience function that currently wraps the Ecto.Repo.reload/2
function.

 reload!(struct_or_structs, opts \\ [])

 A convenience function that currently wraps the Ecto.Repo.reload!/2
function.

 rollback(value)

 A convenience function that currently wraps the Ecto.Repo.rollback/1
function.

 stream(queryable, opts \\ [])

 A convenience function that currently wraps the Ecto.Repo.stream/2
function.

 transaction(job, opts \\ [])

 A convenience function that currently wraps the Ecto.Repo.transaction/2
function.

 update(changeset, opts \\ [])

 A convenience function that currently wraps the Ecto.Repo.update/2
function.

 update!(changeset, opts \\ [])

 A convenience function that currently wraps the Ecto.Repo.update!/2
function.

 update_all(queryable, updates, opts \\ [])

 A convenience function that currently wraps the Ecto.Repo.update_all/3
function.

 Datastore Management

 create_datastore(datastore_options, opts \\ [])

 Creates a new Datastore along with its contexts.

 create_datastore_contexts(datastore_options, datastore_contexts, opts \\ [])

 Creates database roles to back all requested Datastore contexts.

 drop_datastore(datastore_options, opts \\ [])

 Drops a Datastore along with its contexts.

 drop_datastore_contexts(datastore_options, datastore_contexts, opts \\ [])

 Drops the requested Datastore contexts.

 get_datastore_context_states(datastore_contexts, opts \\ [])

 Returns the state of the requested contexts.

 get_datastore_state(datastore_options, opts \\ [])

 Returns the state of the database and database roles which back the Datastore
and contexts, respectively, of the provided Datastore options definition.

 Datastore Migrations

 get_datastore_version(datastore_options, opts \\ [])

 Returns the most recently installed database migration version number.

 upgrade_datastore(datastore_options, datastore_type, migration_bindings, opts \\ [])

 Updates a Datastore to the most current version of the given type of Datastore.

 Runtime

 current_datastore_context()

 Retrieves either atom name or pid/0 of the currently established Datastore
context, unless no context has been established.

 put_datastore_context(context)

 Establishes the Datastore Context to use for Datastore interactions in the
Elixir process where this function is called.

 start_datastore(datastore_options, supervisor_name \\ nil)

 Starts database connections for all of login contexts in the Datastore options.

 start_datastore_context(datastore_options, context)

 Starts a database connection for the specific Datastore context provided.

 stop_datastore(datastore_options_or_contexts, db_shutdown_timeout \\ 60000)

 Disconnects the database connections for all of the login Datastore option contexts.

 stop_datastore_context(context, db_shutdown_timeout \\ 60000)

 Disconnects the database connection for the specific Datastore context provided.

 Development Support

 drop_database(datastore_options)

 Drops a Datastore previously created by the load_database/2 function in
support of development related activities.

 get_datastore_options(opts \\ [])

 Retrieves a populated MscmpSystDb.Types.DatastoreOptions.t/0 struct which
can be used to facilitate database involving development activities.

 get_devsupport_context_name()

 Retrieves the name of the login Datastore Context typically used in
development support.

 get_devsupport_datastore_options(opts \\ [])

 Retrieves a populated MscmpSystDb.Types.DatastoreOptions.t/0 struct with
defaults appropriate for interactive development support.

 get_testsupport_context_name()

 Retrieves the name of the login Datastore Context typically used in
testing support.

 get_testsupport_datastore_options(opts \\ [])

 Retrieves a populated MscmpSystDb.Types.DatastoreOptions.t/0 struct with
defaults appropriate for setting up test script database services.

 load_database(datastore_options, datastore_type)

 Creates a Datastore, related Datastore Contexts, and processes migrations for
the identified type in support of development related activities.

 Query

 Link to this function

 aggregate(queryable, aggregate, field, opts \\ [])

A convenience function that currently wraps the Ecto.Repo.aggregate/4
function.

 Link to this function

 all(queryable, opts \\ [])

 @spec all(Ecto.Queryable.t(), Keyword.t()) :: [Ecto.Schema.t()]

A convenience function that currently wraps the Ecto.Repo.all/2 function.

 Link to this function

 delete(struct_or_changeset, opts \\ [])

A convenience function that currently wraps the Ecto.Repo.delete/2
function.

 Link to this function

 delete!(struct_or_changeset, opts \\ [])

A convenience function that currently wraps the Ecto.Repo.delete!/2
function.

 Link to this function

 delete_all(queryable, opts \\ [])

A convenience function that currently wraps the Ecto.Repo.delete_all/2
function.

 Link to this function

 exists?(queryable, opts \\ [])

A convenience function that currently wraps the Ecto.Repo.exists?/2
function.

 Link to this function

 get(queryable, id, opts \\ [])

A convenience function that currently wraps the Ecto.Repo.get/3
function.

 Link to this function

 get!(queryable, id, opts \\ [])

A convenience function that currently wraps the Ecto.Repo.get!/3
function.

 Link to this function

 get_by(queryable, clauses, opts \\ [])

A convenience function that currently wraps the Ecto.Repo.get_by/3
function.

 Link to this function

 get_by!(queryable, clauses, opts \\ [])

A convenience function that currently wraps the Ecto.Repo.get_by!/3
function.

 Link to this function

 in_transaction?()

A convenience function that currently wraps the Ecto.Repo.in_transaction?/0
function.

 Link to this function

 insert(struct_or_changeset, opts \\ [])

A convenience function that currently wraps the Ecto.Repo.insert/2
function.

 Link to this function

 insert!(struct_or_changeset, opts \\ [])

A convenience function that currently wraps the Ecto.Repo.insert!/2
function.

 Link to this function

 insert_all(schema_or_source, entries_or_query, opts \\ [])

A convenience function that currently wraps the Ecto.Repo.insert_all/3
function.

 Link to this function

 insert_or_update(changeset, opts \\ [])

A convenience function that currently wraps the Ecto.Repo.insert_or_update/2
function.

 Link to this function

 insert_or_update!(changeset, opts \\ [])

A convenience function that currently wraps the Ecto.Repo.insert_or_update!/2
function.

 Link to this function

 load(module_or_map, data)

A convenience function that currently wraps the Ecto.Repo.load/2
function.

 Link to this function

 one(queryable, opts \\ [])

A convenience function that currently wraps the Ecto.Repo.one/2
function.

 Link to this function

 one!(queryable, opts \\ [])

A convenience function that currently wraps the Ecto.Repo.one!/2
function.

 Link to this function

 preload(structs_or_struct_or_nil, preloads, opts \\ [])

A convenience function that currently wraps the Ecto.Repo.preload/3
function.

 Link to this function

 prepare_query(operation, query, opts \\ [])

A convenience function that currently wraps the Ecto.Repo.prepare_query/3
function.

 Link to this function

 query_for_many(query, query_params \\ [], opts \\ [])

 @spec query_for_many(iodata(), [term()], Keyword.t()) ::
 {:ok,
 %{
 :rows => nil | [[term()] | binary()],
 :num_rows => non_neg_integer(),
 optional(atom()) => any()
 }}
 | {:error, MscmpSystError.t()}

Executes a database query and returns all rows.

 Link to this function

 query_for_many!(query, query_params \\ [], opts \\ [])

 @spec query_for_many!(iodata(), [term()], Keyword.t()) :: %{
 :rows => nil | [[term()] | binary()],
 :num_rows => non_neg_integer(),
 optional(atom()) => any()
}

Executes a database query and returns all rows. Raises on error.

 Link to this function

 query_for_none(query, query_params \\ [], opts \\ [])

 @spec query_for_none(iodata(), [term()], Keyword.t()) ::
 :ok | {:error, MscmpSystError.t()}

Executes a database query but returns no results.

 Link to this function

 query_for_none!(query, query_params \\ [], opts \\ [])

 @spec query_for_none!(iodata(), [term()], Keyword.t()) :: :ok

Executes a database query but returns no results. Raises on error.

 Link to this function

 query_for_one(query, query_params \\ [], opts \\ [])

 @spec query_for_one(iodata(), [term()], Keyword.t()) ::
 {:ok, [any()]} | {:error, MscmpSystError.t()}

Executes a database query and returns a single row.

 Link to this function

 query_for_one!(query, query_params \\ [], opts \\ [])

 @spec query_for_one!(iodata(), [term()], Keyword.t()) :: [any()]

Executes a database query and returns a single row. Raises on error.

 Link to this function

 query_for_value(query, query_params \\ [], opts \\ [])

 @spec query_for_value(iodata(), [term()], Keyword.t()) ::
 {:ok, any()} | {:error, MscmpSystError.t()}

Executes a database query returning a single value.

 Link to this function

 query_for_value!(query, query_params \\ [], opts \\ [])

 @spec query_for_value!(iodata(), [term()], Keyword.t()) :: any()

Executes a database query returning a single value. Raises on error.

 Link to this function

 record_count(queryable, opts)

Returns the record count of the given queryable argument.

 Link to this function

 reload(struct_or_structs, opts \\ [])

A convenience function that currently wraps the Ecto.Repo.reload/2
function.

 Link to this function

 reload!(struct_or_structs, opts \\ [])

A convenience function that currently wraps the Ecto.Repo.reload!/2
function.

 Link to this function

 rollback(value)

A convenience function that currently wraps the Ecto.Repo.rollback/1
function.

 Link to this function

 stream(queryable, opts \\ [])

A convenience function that currently wraps the Ecto.Repo.stream/2
function.

 Link to this function

 transaction(job, opts \\ [])

 @spec transaction(
 (... -> any()) | Ecto.Multi.t(),
 keyword()
) :: {:error, MscmpSystError.t()} | {:ok, any()}

A convenience function that currently wraps the Ecto.Repo.transaction/2
function.

 Link to this function

 update(changeset, opts \\ [])

A convenience function that currently wraps the Ecto.Repo.update/2
function.

 Link to this function

 update!(changeset, opts \\ [])

A convenience function that currently wraps the Ecto.Repo.update!/2
function.

 Link to this function

 update_all(queryable, updates, opts \\ [])

A convenience function that currently wraps the Ecto.Repo.update_all/3
function.

 Datastore Management

 Link to this function

 create_datastore(datastore_options, opts \\ [])

 @spec create_datastore(MscmpSystDb.Types.DatastoreOptions.t(), Keyword.t()) ::
 {:ok, MscmpSystDb.Types.database_state_values(),
 [MscmpSystDb.Types.ContextState.t()]}
 | {:error, MscmpSystError.t()}

Creates a new Datastore along with its contexts.
The creation of a new Datastore includes creating new database to back the
Datastore and database roles representing each of the Datastore contexts.

 Link to this function

 create_datastore_contexts(datastore_options, datastore_contexts, opts \\ [])

 @spec create_datastore_contexts(
 MscmpSystDb.Types.DatastoreOptions.t(),
 [MscmpSystDb.Types.DatastoreContext.t(), ...],
 Keyword.t()
) ::
 {:ok, [MscmpSystDb.Types.ContextState.t(), ...]}
 | {:error, MscmpSystError.t()}

Creates database roles to back all requested Datastore contexts.
Usually Datastore contexts are created in the create_datastore/1 call, but
over the course of time it is expected that applications may define new
contexts as needs change. This function allows applications to add new
contexts to existing Datastores.

 Link to this function

 drop_datastore(datastore_options, opts \\ [])

 @spec drop_datastore(MscmpSystDb.Types.DatastoreOptions.t(), Keyword.t()) ::
 :ok | {:error, MscmpSystError.t()}

Drops a Datastore along with its contexts.
Dropping a Datastore will drop the database backing the Datastore from the
database server as well as all of the database roles associated defined by the
provided database options.
Prior to dropping the Datastore, all active connections to the Datastore
should be terminated or the function call could fail.
Note that this is am irreversible, destructive action. Any successful call
will result in data loss.

 Link to this function

 drop_datastore_contexts(datastore_options, datastore_contexts, opts \\ [])

 @spec drop_datastore_contexts(
 MscmpSystDb.Types.DatastoreOptions.t(),
 [MscmpSystDb.Types.DatastoreContext.t(), ...],
 Keyword.t()
) :: :ok | {:error, MscmpSystError.t()}

Drops the requested Datastore contexts.
This function will drop the database roles from the database server that
correspond to the requested Datastore contexts. You should be sure that the
requested Datastore contexts do not have active database connections when
calling this function as active connections are likely to result in an
error condition.

 Link to this function

 get_datastore_context_states(datastore_contexts, opts \\ [])

 @spec get_datastore_context_states(
 MscmpSystDb.Types.DatastoreOptions.t(),
 Keyword.t()
) ::
 {:ok, [MscmpSystDb.Types.ContextState.t(), ...]}
 | {:error, MscmpSystError.t()}

Returns the state of the requested contexts.
This function will check for each given context that: it exist, whether or not
database connections may be started for it, and whether or not database
connections have been started.
Note that only startable contexts are included in this list. If the context
is not startable or has id: nil, the context will be excluded from the
results of this function.

 Link to this function

 get_datastore_state(datastore_options, opts \\ [])

 @spec get_datastore_state(MscmpSystDb.Types.DatastoreOptions.t(), Keyword.t()) ::
 {:ok, MscmpSystDb.Types.database_state_values(),
 [MscmpSystDb.Types.ContextState.t()]}
 | {:error, MscmpSystError.t()}

Returns the state of the database and database roles which back the Datastore
and contexts, respectively, of the provided Datastore options definition.

 Datastore Migrations

 Link to this function

 get_datastore_version(datastore_options, opts \\ [])

 @spec get_datastore_version(MscmpSystDb.Types.DatastoreOptions.t(), Keyword.t()) ::
 {:ok, String.t()} | {:error, MscmpSystError.t()}

Returns the most recently installed database migration version number.
The version is returned as the string representation of our segmented version
number in the format RR.VV.UUU.SSSSSS.MMM where each segment represents a
Base 36 number for specific versioning purposes. The segments are defined as:
	RR - The major feature release number in the decimal range of 0 - 1,295.

	VV - The minor feature version within the release in the decimal range
of 0 - 1,295.

	UUU - The update patch number of the specified release/version in the
decimal range of 0 - 46,655.

	SSSSSS - Sponsor or client number for whom the specific migration or
version is being produced for in the decimal range of 0 - 2,176,782,335.

	MMM - Sponsor modification number in the decimal range of 0 - 46,655.

See mix builddb for further explanation version number segment meanings.

 Link to this function

 upgrade_datastore(datastore_options, datastore_type, migration_bindings, opts \\ [])

 @spec upgrade_datastore(
 MscmpSystDb.Types.DatastoreOptions.t(),
 String.t(),
 Keyword.t(),
 Keyword.t()
) :: {:ok, [String.t()]} | {:error, MscmpSystError.t()}

Updates a Datastore to the most current version of the given type of Datastore.
If a Datastore is already up-to-date, this function is basically a "no-op"
that returns the current version. Otherwise, database migrations for the
Datastore type are applied until the Datastore is fully upgraded to the most
recent schema version.

 Runtime

 Link to this function

 current_datastore_context()

 @spec current_datastore_context() :: atom() | pid()

Retrieves either atom name or pid/0 of the currently established Datastore
context, unless no context has been established.

 Link to this function

 put_datastore_context(context)

 @spec put_datastore_context(pid() | Ecto.Repo.t() | Ecto.Adapter.adapter_meta()) ::
 atom() | pid()

Establishes the Datastore Context to use for Datastore interactions in the
Elixir process where this function is called.
Using this function will set the given Datastore Context in the Process
Dictionary of the process from which the function call is made.

 Link to this function

 start_datastore(datastore_options, supervisor_name \\ nil)

 @spec start_datastore(
 MscmpSystDb.Types.DatastoreOptions.t(),
 Supervisor.supervisor() | nil
) ::
 {:ok, :all_started | :some_started,
 [MscmpSystDb.Types.context_state_values()]}
 | {:error, MscmpSystError.t()}

Starts database connections for all of login contexts in the Datastore options.

 Link to this function

 start_datastore_context(datastore_options, context)

 @spec start_datastore_context(
 MscmpSystDb.Types.DatastoreOptions.t(),
 atom() | MscmpSystDb.Types.DatastoreContext.t()
) :: {:ok, pid()} | {:error, MscmpSystError.t()}

Starts a database connection for the specific Datastore context provided.

 Link to this function

 stop_datastore(datastore_options_or_contexts, db_shutdown_timeout \\ 60000)

 @spec stop_datastore(
 MscmpSystDb.Types.DatastoreOptions.t()
 | [MscmpSystDb.Types.DatastoreContext.t()]
 | [%{context_name: MscmpSystDb.Types.context_name()}],
 non_neg_integer()
) :: :ok | {:error, MscmpSystError.t()}

Disconnects the database connections for all of the login Datastore option contexts.

 Link to this function

 stop_datastore_context(context, db_shutdown_timeout \\ 60000)

 @spec stop_datastore_context(
 pid() | atom() | MscmpSystDb.Types.DatastoreContext.t(),
 non_neg_integer()
) ::
 :ok

Disconnects the database connection for the specific Datastore context provided.

 Development Support

 Link to this function

 drop_database(datastore_options)

 @spec drop_database(MscmpSystDb.Types.DatastoreOptions.t()) :: :ok

Drops a Datastore previously created by the load_database/2 function in
support of development related activities.
Security Note
This operation is specifically intended to support development and testing
activities and should not be used in code which runs in production
environments.

This function ensures that the Datastore is stopped and then drops it.

 Parameters

	datastore_options - a required MscmpSystDb.Types.DatastoreOptions.t/0
value which defines the Datastore and Datastore Contexts to drop.

 Link to this function

 get_datastore_options(opts \\ [])

 @spec get_datastore_options(Keyword.t()) :: MscmpSystDb.Types.DatastoreOptions.t()

Retrieves a populated MscmpSystDb.Types.DatastoreOptions.t/0 struct which
can be used to facilitate database involving development activities.
The DatastoreOptions will set all important values and identify two Datastore
Contexts: the standard non-login, "owner" Context which will own the database
objects and a single login Context which would be typically of an application
context for accessing the database.
Security Note
The DatastoreOptions produced by this function are intended for use only in
support of software development activities in highly controlled environments
where real, user data is not at risk of being compromised. The values
included in function effectively bypass a number of the security measures
and assumptions in order to facilitate developer convenience.

Currently this function does not support scenarios where more login Contexts
may be useful.

 Parameters

	opts - an optional parameter consisting of type Keyword.t/0
containing values which will override the function supplied defaults. The
available options are:
	database_name - a binary value indicating a name for the database to
use. The default database name is ms_devsupport_database.

	datastore_code - a binary value providing a Datastore level salting
value used in different hashing operations. The default value is
"musesystems.publicly.known.insecure.devsupport.code"

	datastore_name - a name for use by the application to identify a given
Datastore. This value will often time be the same as the
database_name value. This value is converted to an atom. The default
value is ms_devsupport_database.

	description_prefix - a binary value which is prefixed to the
descriptions of the created database contexts and which appear in the
database role descriptions. The default value is "Muse Systems
DevSupport".

	database_role_prefix - a binary value which is prefixed to the
names of the database roles created to back the Datastore Contexts.
The default value is ms_devsupport.

	context_name - a binary value which provides a unique context name for
the login Context identified by this function. This value is converted
to an atom by this function. The default value is
ms_devsupport_context.

	database_password - a binary value which is the database password that
the login Datastore Context uses to log into the database. The default
value is "musesystems.publicly.known.insecure.devsupport.apppassword".

	starting_pool_size - the number of database connections the login
Context will establish from the application. The default value is 5.

	db_host - a string indicating the host address of the database server.
This can be an IP address or resolvable DNS entry. The default value is
127.0.0.1.

	db_port - an integer indicating the TCP port on which to contact the
database server. The default value is the standard PostgreSQL port
number 5432.

	server_salt - a binary value providing a Datastore level salting
value used in different hashing operations. The default value is
"musesystems.publicly.known.insecure.devsupport.salt"

	dbadmin_password - a binary value for the standard
ms_syst_privileged database role account created via the database
bootstrapping script. The default value is
"musesystems.publicly.known.insecure.devsupport.password".

	dbadmin_pool_size - the number of database connections which will be
opened to support DBA or Privileged operations. The default value is
1.

 Link to this function

 get_devsupport_context_name()

 @spec get_devsupport_context_name() :: atom()

Retrieves the name of the login Datastore Context typically used in
development support.
This is a way to retrieve the standard development support name for use with
functions such as put_datastore_context/1

 Link to this function

 get_devsupport_datastore_options(opts \\ [])

 @spec get_devsupport_datastore_options(Keyword.t()) ::
 MscmpSystDb.Types.DatastoreOptions.t()

Retrieves a populated MscmpSystDb.Types.DatastoreOptions.t/0 struct with
defaults appropriate for interactive development support.
Currently this function is simply an alias for get_datastore_options/1. All
documentation for that function applies to this function.

 Parameters

	opts - an optional parameter consisting of type Keyword.t/0
containing values which will override the function supplied defaults. The
available options are the same as those for get_datastore_options/1

 Link to this function

 get_testsupport_context_name()

 @spec get_testsupport_context_name() :: atom()

Retrieves the name of the login Datastore Context typically used in
testing support.
This is a way to retrieve the standard testing support name for use with
functions such as put_datastore_context/1

 Link to this function

 get_testsupport_datastore_options(opts \\ [])

 @spec get_testsupport_datastore_options(Keyword.t()) ::
 MscmpSystDb.Types.DatastoreOptions.t()

Retrieves a populated MscmpSystDb.Types.DatastoreOptions.t/0 struct with
defaults appropriate for setting up test script database services.
This function calls get_datastore_options/1 with alternate defaults suitable
for running test scripts independently from database environments targeted to
interactive development. Documentation for that function will largely apply
for this function, except as specifically contradicted here.

 Parameters

	opts - an optional parameter consisting of type Keyword.t/0
containing values which will override the function supplied defaults. The
available options are:
	database_name - a binary value indicating a name for the database to
use. The default database name is ms_testsupport_database.

	datastore_code - a binary value providing a Datastore level salting
value used in different hashing operations. The default value is
"musesystems.publicly.known.insecure.testsupport.code"

	datastore_name - a name for use by the application to identify a given
Datastore. This value will often time be the same as the
database_name value. This value is converted to an atom. The default
value is ms_testsupport_database.

	description_prefix - a binary value which is prefixed to the
descriptions of the created database contexts and which appear in the
database role descriptions. The default value is "Muse Systems
TestSupport".

	database_role_prefix - a binary value which is prefixed to the
names of the database roles created to back the Datastore Contexts.
The default value is ms_testsupport.

	context_name - a binary value which provides a unique context name for
the login Context identified by this function. This value is converted
to an atom by this function. The default value is
ms_testsupport_context.

	database_password - a binary value which is the database password that
the login Datastore Context uses to log into the database. The default
value is "musesystems.publicly.known.insecure.testsupport.apppassword".

	starting_pool_size - the number of database connections the login
Context will establish from the application. The default value is 5.

	db_host - a string indicating the host address of the database server.
This can be an IP address or resolvable DNS entry. The default value is
127.0.0.1.

	db_port - an integer indicating the TCP port on which to contact the
database server. The default value is the standard PostgreSQL port
number 5432.

	server_salt - a binary value providing a Datastore level salting
value used in different hashing operations. The default value is
"musesystems.publicly.known.insecure.testsupport.salt"

	dbadmin_password - a binary value for the standard
ms_syst_privileged database role account created via the database
bootstrapping script. The default value is
"musesystems.publicly.known.insecure.devsupport.password".

	dbadmin_pool_size - the number of database connections which will be
opened to support DBA or Privileged operations. The default value is
1.

 Link to this function

 load_database(datastore_options, datastore_type)

 @spec load_database(MscmpSystDb.Types.DatastoreOptions.t(), String.t()) ::
 {:ok, [String.t()]} | {:error, MscmpSystError.t()}

Creates a Datastore, related Datastore Contexts, and processes migrations for
the identified type in support of development related activities.
Security Note
This operation is specifically intended to support development and testing
activities and should not be used in code which runs in production
environments.

This is a simplified and condensed version of the full process of database
creation.

 Parameters

	datastore_options - a required MscmpSystDb.Types.DatastoreOptions.t/0
value which defines the Datastore and Datastore Contexts to use when
creating the database. Typically this will be generated by
get_datastore_options/1, but any valid
MscmpSystDb.Types.DatastoreOptions.t/0 value will work.

	datastore_type - a required string value which indicates the Datastore
Type to load.

MscmpSystDb.Types

Defines public types for use with the MscmpSystDb module.

 Summary

 Types

 context_name()

 An application wide designation for application defined datastore access
accounts.

 context_role()

 The database role name for the specific access context defined by the
context_name().

 context_state_values()

 Defines the available states in which a context may exist.

 database_state_values()

 Values indicating the state of the database which backs a given Datastore.

 db_type_comparison_operators()

 Defines operators for use in comparison functions.

 migration_state_values()

 Defines the available states in which a Datastore might exist in relation to
its schema migrations.

 timex_shift_options()

 Options which are expected by the Timex library.

 Types

 Link to this type

 context_name()

 @type context_name() :: atom() | nil

An application wide designation for application defined datastore access
accounts.

 Link to this type

 context_role()

 @type context_role() :: String.t()

The database role name for the specific access context defined by the
context_name().

 Link to this type

 context_state_values()

 @type context_state_values() ::
 :not_found | :not_ready | :ready | :not_started | :started

Defines the available states in which a context may exist.
	:not_found - The database role backing the context was not found on the
Datastore database server.

	:not_ready - The database role backing the context exists, but is not
completely set up yet. This is an interim stage that usually has to cross
transaction boundaries.

	:not_started - When starting contexts the system doesn't check for the
 existence of each context which in turn means that a start failure could
 be indicative of either non-existence or some other problem. In these
 start-up scenarios the state would be :not_started.

	:ready - The context was found and may be connected to the database, but
the database connections for the context have not been started yet.

	:started - The context was found and database connections for the
context have already been started.

 Link to this type

 database_state_values()

 @type database_state_values() :: :not_found | :ready

Values indicating the state of the database which backs a given Datastore.
	:not_found - The database for the Datastore does not exist on the
database server.

	:ready - The database is ready for further processing by the migrations
subsystem.

 Link to this type

 db_type_comparison_operators()

 @type db_type_comparison_operators() :: :gt | :lt | :eq | :lcr | :rcl | :gto | :lto

Defines operators for use in comparison functions.
These operators are used in conjunction with the MscmpSystDb.DbTypes
and MscmpSystDb.DbTypes.Range protocols.
The range related operator values are generally the same as those defined by
the PostgreSQL database range types, but there are some small differences.
	:gt - left is greater than right.

	:lt - left is less than right.

	:eq - the values are equal.

	:lcr - left contains right.

	:rcl - right contains left.

	:gto - greater than overlapping.

	:lto - less than overlapping.

Examples
Greater Than (:gt)
iex> left_range =
...> %MscmpSystDb.DbTypes.IntegerRange{
...> lower: 200,
...> upper: 210
...> }
iex> right_range =
...> %MscmpSystDb.DbTypes.IntegerRange{
...> lower: 100,
...> upper: 110
...> }
iex> MscmpSystDb.DbTypes.compare(left_range, right_range)
:gt
Less Than (:lt)
iex> left_range =
...> %MscmpSystDb.DbTypes.IntegerRange{
...> lower: 100,
...> upper: 110
...> }
iex> right_range =
...> %MscmpSystDb.DbTypes.IntegerRange{
...> lower: 200,
...> upper: 210
...> }
iex> MscmpSystDb.DbTypes.compare(left_range, right_range)
:lt
Equal (:eq)
iex> left_range =
...> %MscmpSystDb.DbTypes.IntegerRange{
...> lower: 100,
...> upper: 110
...> }
iex> right_range =
...> %MscmpSystDb.DbTypes.IntegerRange{
...> lower: 100,
...> upper: 110
...> }
iex> MscmpSystDb.DbTypes.compare(left_range, right_range)
:eq
Left Contains Right (:lcr)
iex> left_range =
...> %MscmpSystDb.DbTypes.IntegerRange{
...> lower: 90,
...> upper: 110
...> }
iex> right_range =
...> %MscmpSystDb.DbTypes.IntegerRange{
...> lower: 100,
...> upper: 110
...> }
iex> MscmpSystDb.DbTypes.compare(left_range, right_range)
:lcr
Right Contains Left (:rcl)
iex> left_range =
...> %MscmpSystDb.DbTypes.IntegerRange{
...> lower: 100,
...> upper: 110
...> }
iex> right_range =
...> %MscmpSystDb.DbTypes.IntegerRange{
...> lower: 100,
...> upper: 111
...> }
iex> MscmpSystDb.DbTypes.compare(left_range, right_range)
:rcl
Greater Than Overlapping (:gto)
iex> left_range =
...> %MscmpSystDb.DbTypes.IntegerRange{
...> lower: 150,
...> upper: 250
...> }
iex> right_range =
...> %MscmpSystDb.DbTypes.IntegerRange{
...> lower: 100,
...> upper: 175
...> }
iex> MscmpSystDb.DbTypes.compare(left_range, right_range)
:gto
Less Than Overlapping (:lto)
iex> left_range =
...> %MscmpSystDb.DbTypes.IntegerRange{
...> lower: 100,
...> upper: 150
...> }
iex> right_range =
...> %MscmpSystDb.DbTypes.IntegerRange{
...> lower: 125,
...> upper: 175
...> }
iex> MscmpSystDb.DbTypes.compare(left_range, right_range)
:lto

 Link to this type

 migration_state_values()

 @type migration_state_values() :: :not_initialized | :not_updated | :ready

Defines the available states in which a Datastore might exist in relation to
its schema migrations.
	:not_initialized - The Datastore does not have the table which manages
the migrations installed. This is also the value reported when the
database_state_values() value for the Datastore is :not_found.

	:not_updated - The Datastore database exists and has been initialized,
but does not have the most recent migrations available applied per the
migrations management table.

	:ready - The migrations are fully up-to-date and the Datastore is ready
to serve the application as needed.

 Link to this type

 timex_shift_options()

 @type timex_shift_options() :: [
 microseconds: integer(),
 seconds: integer(),
 days: integer(),
 months: integer()
]

Options which are expected by the Timex library.
The MscmpSystDb.DbTypes.Interval struct can be converted into a form
which can be consumed by Timex.shift/2 and this type defines the possible
return values.
Note that this type should closely match the t:Timex.shift_options types
except that we limit it to the types present in the
MscmpSystDb.DbTypes.Interval.t/0 data type.

MscmpSystDb.Types.BoundsCompareResult

The comparison operators for both the lower and upper bounds of a range type.
There are cases where normal comparisons are too coarse-grained to provide a
meaningful result when dealing with ranges. In these cases you need the
detailed lower/upper comparison results.

 Summary

 Types

 t()

 The comparison operators for both the lower and upper bounds of a range type.

 Types

 Link to this type

 t()

 @type t() :: %MscmpSystDb.Types.BoundsCompareResult{
 lower_comparison: MscmpSystDb.Types.db_type_comparison_operators(),
 upper_comparison: MscmpSystDb.Types.db_type_comparison_operators()
}

The comparison operators for both the lower and upper bounds of a range type.
See MscmpSystDb.Types.BoundsCompareResult for more.

MscmpSystDb.Types.ContextState

A struct for reporting the runtime state of Datastore Contexts.

 Summary

 Types

 t()

 A struct for reporting the runtime state of Datastore Contexts.

 Types

 Link to this type

 t()

 @type t() :: %MscmpSystDb.Types.ContextState{
 context: MscmpSystDb.Types.context_name(),
 state: MscmpSystDb.Types.context_state_values()
}

A struct for reporting the runtime state of Datastore Contexts.

 Attributes

	:context - identifies the name of the Datastore Context for which
runtime state is being reported.

	:state - indicates the current runtime state of the named Datastore
Context. See MscmpSystDb.Types.context_state_values/0 for more.

MscmpSystDb.Types.DatastoreContext

A struct defining an application level security context which maps to a
specific database role.
Datastore contexts allow the application to access the database using database
roles which are limited by their database security configuration.

 Summary

 Types

 t()

 A struct defining an application level security context which maps to a
specific database role.

 Types

 Link to this type

 t()

 @type t() :: %MscmpSystDb.Types.DatastoreContext{
 context_name: MscmpSystDb.Types.context_name() | nil,
 database_owner_context: boolean() | nil,
 database_password: String.t() | nil,
 database_role: MscmpSystDb.Types.context_role() | nil,
 description: String.t() | nil,
 login_context: boolean() | nil,
 start_context: boolean() | nil,
 starting_pool_size: integer() | nil
}

A struct defining an application level security context which maps to a
specific database role.

 Attributes

	:context_name - the application's identifier for a specific security context.
This isn't specific to a particular database, but to the application
overall.

	:description - a user friendly description of the context.

	:database_role - maps the application context to a specific database
role. When establishing a connection to a database, this is the database
role name that will be used.

	:database_password - the password used to connect the :database_role
to the database server.

	:starting_pool_size - the number of database connections to initially
open for this context.

	:start_context - when working with application database connections
which are started and pooled at application start time, this value
indicates whether or not the specific context should be started as normal.
For normal startup to take place, both this value and the :login_context
value must be true. This setting is disregarded in operations involving
database connections which are established on demand as needed, such as
DBA related connections.

	:login_context - if true, the context is a normal context associated
with a database login role and will be used in establishing connections to
the database. If false, the context is an administrative context which
is only used in security definitions within the database. Database owner
roles, roles which own all of the application database tables/functions
would typically not be login roles, even though the are highly privileged
when their context is active in a database session. (default: true)

	:database_owner_context - if true the context represents the database
owner role. If false or not provided the database role is not used for
this purpose. Note that there should only be one context defined as the
database owner for any Datastore.

For more see MscmpSystDb.Types.DatastoreContext.

MscmpSystDb.Types.DatastoreOptions

A struct defining the connection parameters to use to connect to a Datastore
backing database.

 Summary

 Types

 t()

 A struct defining the connection parameters to use to connect to a Datastore
backing database.

 Types

 Link to this type

 t()

 @type t() :: %MscmpSystDb.Types.DatastoreOptions{
 contexts: [MscmpSystDb.Types.DatastoreContext.t()] | [],
 database_name: String.t(),
 datastore_code: String.t() | nil,
 datastore_name: atom() | nil,
 db_server: MscmpSystDb.Types.DbServer.t()
}

A struct defining the connection parameters to use to connect to a Datastore
backing database.

 Attributes

	:database_name - The name of the database in the database server to
which the connection will be made. Often times this value will be the
same as the String.t() form of the :datastore_name value.

	:datastore_code - Defines a Datastore specific salting value for use in
certain security and cryptographic related functions.

	:datastore_name - A name for use by the application to identify a given
Datastore. This value will often time be the same as the :database_name
value, except as an atom() rather than a String.t().

	:contexts - A list of available Datastore Context values defining which
contexts are available for this Datastore. See
MscmpSystDb.Types.DatastoreContext.t/0 for more information concerning
the values of each entry in the list.

	:db_server - The database server information for the server where the
Datastore database resides. See 't:MscmpSystDb.Types.DbServer.t/0' for
additional details.

MscmpSystDb.Types.DbServer

Provides the definition of a database server which can back application
instances.
The data in the struct includes fields which uniquely identifies the server,
provides information for where on the network the server can be found, and
connection related parameters. Also, the full administrative credentials are
included.

 Summary

 Types

 t()

 Provides the definition of a database server which can back application
instances.

 Types

 Link to this type

 t()

 @type t() :: %MscmpSystDb.Types.DbServer{
 db_host: String.t() | nil,
 db_max_instances: integer() | nil,
 db_port: integer() | nil,
 db_show_sensitive: boolean() | nil,
 dbadmin_password: String.t() | nil,
 dbadmin_pool_size: integer() | nil,
 server_name: String.t() | nil,
 server_pools: [String.t()] | [] | nil,
 server_salt: String.t() | nil,
 start_server_instances: boolean() | nil
}

Provides the definition of a database server which can back application
instances.

 Attributes

	:server_name - Provides a unique identifier for a database server
instance.

	:start_server_instances - If true, indicates that databases on the
server can be started and made available as application Datastores.

	:server_pools - The server pools in which the database server
participates.

	:db_host - The hostname or IP address of the database server on the
network.

	:db_port - The TCP port on which the database server is listening for
connections.

	:db_show_sensitive - If true, various logging events may show unredacted
"sensitive" database connectivity information. Note that even when false,
the application still log sensitive application data.

	:db_max_instances - The total number of databases allowed to be
established for the db_server instance.

	:server_salt - For certain cryptographic operations, such as password
derivation, allows for the assignment of specific salting value for that is
specific to a given database server. This value must be at least 32 bytes
long and should be a random string.

	:dbadmin_password - The ms_syst_privileged role password for privileged
operations such as creating a new database/Datastore or new database roles
on the database server instance.

	:dbadmin_pool_size - The pool size to use for creating connections for
privileged operations using the ms_syst_privileged role.

See MscmpSystDb.Types.DbServer for more.

MscmpSystDb.DbTypes.DateRange

An Elixir representation of the PostgreSQL daterange data type.
Derived from the Postgrex.Range data type. For more information about this
data type, see: The PostgreSQL Documentation: Range Types
This type implements the MscmpSystDb.DbTypes protocol.

 Summary

 Types

 t()

 Functions

 embed_as(_)

 Callback implementation for Ecto.Type.embed_as/1.

 equal?(term1, term2)

 Callback implementation for Ecto.Type.equal?/2.

 Types

 Link to this type

 t()

 @type t() :: %MscmpSystDb.DbTypes.DateRange{
 lower: Date.t() | :empty | :unbound,
 lower_inclusive: boolean(),
 upper: Date.t() | :empty | :unbound,
 upper_inclusive: boolean()
}

 Functions

 Link to this function

 embed_as(_)

Callback implementation for Ecto.Type.embed_as/1.

 Link to this function

 equal?(term1, term2)

Callback implementation for Ecto.Type.equal?/2.

MscmpSystDb.DbTypes.DateTimeRange

An Elixir representation of the PostgreSQL tstzrange data type.
Derived from the Postgrex.Range data type. For more information about this
data type, see: The PostgreSQL Documentation: Range Types

 Summary

 Types

 t()

 Functions

 embed_as(_)

 Callback implementation for Ecto.Type.embed_as/1.

 equal?(term1, term2)

 Callback implementation for Ecto.Type.equal?/2.

 Types

 Link to this type

 t()

 @type t() :: %MscmpSystDb.DbTypes.DateTimeRange{
 lower: DateTime.t() | :empty | :unbound,
 lower_inclusive: boolean(),
 upper: DateTime.t() | :empty | :unbound,
 upper_inclusive: boolean()
}

 Functions

 Link to this function

 embed_as(_)

Callback implementation for Ecto.Type.embed_as/1.

 Link to this function

 equal?(term1, term2)

Callback implementation for Ecto.Type.equal?/2.

MscmpSystDb.DbTypes.DecimalRange

An Elixir representation of the PostgreSQL numrange data type.
Derived from the Postgrex.Range data type. For more information about this
data type, see: The PostgreSQL Documentation: Range Types

 Summary

 Types

 t()

 Functions

 embed_as(_)

 Callback implementation for Ecto.Type.embed_as/1.

 equal?(term1, term2)

 Callback implementation for Ecto.Type.equal?/2.

 Types

 Link to this type

 t()

 @type t() :: %MscmpSystDb.DbTypes.DecimalRange{
 lower: Decimal.t() | :empty | :unbound,
 lower_inclusive: boolean(),
 upper: Decimal.t() | :empty | :unbound,
 upper_inclusive: boolean()
}

 Functions

 Link to this function

 embed_as(_)

Callback implementation for Ecto.Type.embed_as/1.

 Link to this function

 equal?(term1, term2)

Callback implementation for Ecto.Type.equal?/2.

MscmpSystDb.DbTypes.Inet

An Elixir representation of the PostgreSQL inet and cidr data types.
Derived from the Postgrex.INET data type. For more information about this
data type, see: The PostgreSQL Documentation: Network Address Types

 Summary

 Types

 t()

 Functions

 embed_as(_)

 Callback implementation for Ecto.Type.embed_as/1.

 equal?(term1, term2)

 Callback implementation for Ecto.Type.equal?/2.

 from_net_address(address_or_network)

 Converts a network address represented either as a
MscmpSystNetwork.Types.IpV4.t/0 or MscmpSystNetwork.Types.IpV6.t/0
value into one represented as a MscmpSystDb.DbTypes.Inet.t/0 value.

 from_postgrex_inet(address)

 Converts a network address represented as a Postgrex.INET.t/0
value into one represented as a MscmpSystDb.DbTypes.Inet.t/0 value.

 to_net_address(address_or_network)

 Converts a network address represented as a MscmpSystDb.DbTypes.Inet.t/0
value into one represented as either a MscmpSystNetwork.Types.IpV4.t/0 or
MscmpSystNetwork.Types.IpV6.t/0 value.

 to_postgrex_inet(address)

 Converts a network address represented as a MscmpSystDb.DbTypes.Inet.t/0
value into one represented as a Postgrex.INET.t/0 value.

 Types

 Link to this type

 t()

 @type t() :: %MscmpSystDb.DbTypes.Inet{
 address: :inet.ip_address(),
 netmask: nil | 0..128
}

 Functions

 Link to this function

 embed_as(_)

Callback implementation for Ecto.Type.embed_as/1.

 Link to this function

 equal?(term1, term2)

Callback implementation for Ecto.Type.equal?/2.

 Link to this function

 from_net_address(address_or_network)

 @spec from_net_address(MscmpSystNetwork.Types.addr_structs()) :: t()

Converts a network address represented either as a
MscmpSystNetwork.Types.IpV4.t/0 or MscmpSystNetwork.Types.IpV6.t/0
value into one represented as a MscmpSystDb.DbTypes.Inet.t/0 value.

 Link to this function

 from_postgrex_inet(address)

 @spec from_postgrex_inet(Postgrex.INET.t()) :: t()

Converts a network address represented as a Postgrex.INET.t/0
value into one represented as a MscmpSystDb.DbTypes.Inet.t/0 value.

 Link to this function

 to_net_address(address_or_network)

 @spec to_net_address(t()) :: MscmpSystNetwork.Types.addr_structs()

Converts a network address represented as a MscmpSystDb.DbTypes.Inet.t/0
value into one represented as either a MscmpSystNetwork.Types.IpV4.t/0 or
MscmpSystNetwork.Types.IpV6.t/0 value.

 Link to this function

 to_postgrex_inet(address)

 @spec to_postgrex_inet(t()) :: Postgrex.INET.t()

Converts a network address represented as a MscmpSystDb.DbTypes.Inet.t/0
value into one represented as a Postgrex.INET.t/0 value.

MscmpSystDb.DbTypes.IntegerRange

An Elixir representation of the PostgreSQL int8range data type.
Derived from the Postgrex.Range data type. For more information about this
data type, see: The PostgreSQL Documentation: Range Types

 Summary

 Types

 t()

 Functions

 embed_as(_)

 Callback implementation for Ecto.Type.embed_as/1.

 equal?(term1, term2)

 Callback implementation for Ecto.Type.equal?/2.

 Types

 Link to this type

 t()

 @type t() :: %MscmpSystDb.DbTypes.IntegerRange{
 lower: integer() | :empty | :unbound,
 lower_inclusive: boolean(),
 upper: integer() | :empty | :unbound,
 upper_inclusive: boolean()
}

 Functions

 Link to this function

 embed_as(_)

Callback implementation for Ecto.Type.embed_as/1.

 Link to this function

 equal?(term1, term2)

Callback implementation for Ecto.Type.equal?/2.

MscmpSystDb.DbTypes.Interval

An Elixir representation of the PostgreSQL interval data type.
Derived from the Postgrex.Interval data type. For more information about this
data type, see: The PostgreSQL Documentation: Date/Time Types

 Summary

 Types

 t()

 Functions

 embed_as(_)

 Callback implementation for Ecto.Type.embed_as/1.

 equal?(term1, term2)

 Callback implementation for Ecto.Type.equal?/2.

 to_timex_shift_options(interval)

 Converts an Interval into a form that can be used by the Timex library's
Timex.shift/2 function.

 Types

 Link to this type

 t()

 @type t() :: %MscmpSystDb.DbTypes.Interval{
 days: integer(),
 microsecs: integer(),
 months: integer(),
 secs: integer()
}

 Functions

 Link to this function

 embed_as(_)

Callback implementation for Ecto.Type.embed_as/1.

 Link to this function

 equal?(term1, term2)

Callback implementation for Ecto.Type.equal?/2.

 Link to this function

 to_timex_shift_options(interval)

 @spec to_timex_shift_options(t()) :: MscmpSystDb.Types.timex_shift_options()

Converts an Interval into a form that can be used by the Timex library's
Timex.shift/2 function.

 Example

iex> example_interval =
...> %MscmpSystDb.DbTypes.Interval{months: 1, days: 1, secs: 1, microsecs: 1}
iex> MscmpSystDb.DbTypes.Interval.to_timex_shift_options(example_interval)
[months: 1, days: 1, seconds: 1, microseconds: 1]

MscmpSystDb.Datastore

Provides basic OTP related features for Datastores.
Functions in this module support running Datastores under supervision and
creates a Datastore supervisor for managing Datastore Context worker
processes.

 Summary

 Functions

 child_spec(datastore_options, opts \\ [])

 Provides a Datastore child specification for use with supervisors.

 start_link(opts \\ [])

 Starts the Datastore Supervisor and its requested child Datastore Contexts.

 Functions

 Link to this function

 child_spec(datastore_options, opts \\ [])

 @spec child_spec(MscmpSystDb.Types.DatastoreOptions.t(), Keyword.t()) ::
 Supervisor.child_spec()

Provides a Datastore child specification for use with supervisors.
Note that this function is not child_spec/1 as expected when a Supervisor
attempts to start a process based on the module name alone. This is because
there is a required parameter which renders that method of starting a process
invalid as there's no default value for the parameter (datastore_options).

 Parameters

	datastore_options - a required Map of values which describe the
Datastore and Datastore Context related connection options. See
MscmpSystDb.Types.DatastoreOptions.t/0 for more.

	opts - a Keyword list of various options accepted or required by the
DynamicSupervisor.start_link/1 function. Note that we provide some
default values: strategy: :one_for_one, restart: :transient,
timeout: 60_000, and the :name option is defaulted to the
datastore_options.datastore_name value.

 Link to this function

 start_link(opts \\ [])

 @spec start_link(Keyword.t()) :: Supervisor.on_start()

Starts the Datastore Supervisor and its requested child Datastore Contexts.
When this function is called, a new DynamicSupervisor for the datastore is
started and any Datastore Contexts which are identified in the
datastore_options are also started and places under the Datastore
Supervisor.

 Options

	name - establishes the name of the Datastore Supervisor and accepts any
name which is valid according to the documentation for GenServer. The
default value for this parameter is the datastore_name value found in the
datastore_options attribute which configures the Datastore.

	datastore_options - a required Map of values which describe the
Datastore and Datastore Context related connection options. See
MscmpSystDb.Types.DatastoreOptions.t/0 for more.

MscmpSystDb.DatastoreContext

Provides basic OTP related features for Datastore Contexts.
Usually functions in this API are called when processing
MscmpSystDb.Datastore module functions. However, there are times
when direct Datastore Context manipulation is appropriate, such as stopping
and then restarting a specific Context for maintenance reasons.

 Summary

 Functions

 child_spec(datastore_options, context_name, opts \\ [])

 Returns the Child Specification used to start the DatastoreContext service.

 start_link(opts \\ [])

 Starts a Datastore Context as a linked process to the caller.

 Functions

 Link to this function

 child_spec(datastore_options, context_name, opts \\ [])

 @spec child_spec(
 MscmpSystDb.Types.DatastoreOptions.t(),
 MscmpSystDb.Types.context_name(),
 Keyword.t()
) ::
 Supervisor.child_spec()

Returns the Child Specification used to start the DatastoreContext service.

 Parameters

	datastore_options - a required Map of values which describe the
Datastore and Datastore Context related connection options. See
MscmpSystDb.Types.DatastoreOptions.t/0 for more.

	context_name - the identity of the context as understood by the system.
The context name is both the identity of the context as an Ecto Repo and is
also used for the child specification ID value as there is the possibility
of multiple contexts to start under the Datastore Supervisor process.

	options - a Keyword List of optional values. Currently there are no
attributes which are expected in this list and it is safe to omit.

 Link to this function

 start_link(opts \\ [])

 @spec start_link(Keyword.t()) :: Supervisor.on_start()

Starts a Datastore Context as a linked process to the caller.
Typically this function is called once for each Context defined for a
Datastore by the MscmpSystDb.Datastore.start_link/1 function.
However there are some cases where starting a Datastore Context independently
can be desirable, such as the Context was earlier stopped for some reason and
needs to be started under it's original Datastore Supervisor.

 Options

	name - see the context_name parameter for
MscmpSystDb.DatastoreContext.child_spec/3.

	datastore_options - see the datastore_options parameter for
MscmpSystDb.DatastoreContext.child_spec/3. This option is
required.

	context - a required map describing the Context to be started. See
t:MscmpSystDb.Types.datastore_context() for more information.

MscmpSystDb.Schema

Provides common attributes for use by most application Ecto Schema instances.
Chiefly, we ensure that the primary and foreign keys are all of a common type.
To use this module, simply add use MscmpSystDb.Schema in place of
use Ecto.Schema.

mix builddb

Builds database sources into their respective migrations according to build
plans.

 Options:

	--type or -t: The type of database to build. This is a required switch
and there is no default value.

	--source or -s: Directory where the buildplans.<type>.toml can be
found. If not provided a default directory of databasein the project
root is assumed.

	--destination or -d: Directory where to build the migrations. The
default value is priv/database is used if not provided. Note that the
migrations files will be built inside a directory built from both the
destination directory from this switch and the database type:
<destination>/<type>.

	--clean or -c: Clean previously created migrations prior to building
the migrations. If this flag is not provided, migrations that already
exist are skipped and only new migrations are built. When the previous
migrations are cleaned out, the build process will create all migrations.

 Description:

This module implements the build process for a modified version of the common
"migrations" database development/deployment strategy. In the model
implemented here, the developer creates source files in PL/pgSQL and then
updates a build plans file which determines how the individual source files
are copied into individual migration files which will then be deployed to the
database. This allows the developer to treat database source more closely to
non-database source code, at least during initial database development.
This migrations model allows for creation of multiple, different databases for
applications that require more than a single database definition. These
multiple database definitions are referred to as database types.
This build process expects the source files to be kept within an independent
source directory, by default: database of the project root. In addition to
the source files, the database directory should also contain TOML files named
buildplans.<database type>.toml which define what migrations will be built
and in what order the database source files will be copied to them. Each
database type will have its own TOML build plans file.
The build plan file is a TOML file with an array of tables of [[buildplan]]:
[[build_plan]]
release = 1
version = 1
update = 0
sponsor = 820
sponsor_modification = 0
load_files = [
 "tables/table_one.sql",
 {type = "sql", file = "tables/table_two.sql"},
 {type = "plan", file = "subplans/subplans.component.toml"}
]
The fields above are defined as:
	release - The major version number of the migration. The first element
of the migration file name.

	version - The minor version number of the migration. The second element
of the migration file name.

	update - The patch version number of the migration. The third element
of the migration name.

	sponsor - In cases where specific clients that use the software are able
to sponsor client-specific customizations, this field identifies the
client sponsoring the change. This element is the fourth element of the
migration file name. All sponsor numbers in the range 0 - 1295 are
reserved for Muse Systems internal use and some specific values in that
range currently have assigned meanings. General public software releases
from Muse Systems will have a sponsor value of 820 (MS in Base 36),
software versions including sponsor number 821 (MT in Base 36)
indicate software created for internal, development testing purposes which
should never be part of a public release of the software.

	sponsor_modification - This field allows for sponsored customization to
both be versioned and sequenced in the migration process. This is the
fifth element of the migration name. For non-sponsored migrations, this
field should just be left at zero.

	load_files - A list of SQL files and sub-plans to include in the build.
Collectively, these are "Load File Items".

Each Load File Item may take one of three forms:
	"path/to/file.sql" - A simple string is interpreted as the path to an
SQL file to load into a migration.

	{type = "sql", file = "path/to/file.sql"} - This is the same as the
simple file path of form 1. Using this form could allow for a slightly
cleaner representation if sat in a group of sub-plan Load File Items.

	{type = "plan", file = "path/to/subplan.toml"} - In this form the path
indicates that the file is a nested build plan, or sub-plan, whose
directives should be followed at this location. A sub-plan is itself a
normal build plan. By convention, a sub-plan file name should take the
form: subplans.<descriptive_name>.toml; unlike the build plan naming
convention, following the sub-plan naming convention is not required.
While build plans may be nested arbitrarily deep, a best practice is to
only use a single level of nesting.

Each table in the array is a specific build plan which will build a single
migration. The body of the migration itself is simply the files in the
load_files list copied to the migration file in the order of the list. Note
that the migration code is wrapped in a PostgreSQL DO block (PL/pgSQL) so
source files may use all the capabilities of PostgreSQL anonymous blocks as
are they subject to its limitations.
Later, on deployment, the migrations will be applied in migration name order.
The migration name is constructed from the versioning information in the
buildplan table with each of the versioning fields (recorded as integers)
being added in their zero padded, base-36 representations.

 Summary

 Functions

 run(args)

 Callback implementation for Mix.Task.run/1.

 Functions

 Link to this function

 run(args)

 @spec run([binary()]) :: :ok

Callback implementation for Mix.Task.run/1.

mix dropdb

Drops a previously loaded development supporting Datastore.
This command takes a number of options many of which match Mix.Tasks.Loaddb.
Insofar as they have corresponding options, the options used with this Mix
task should have values which match the command used to create the Datastore;
failing to do this could cause the drop operation to fail or fail partially.
Usage Note
There is nothing stopping you from using this command from dropping any
Datastore in the system and technically it should work. But the only
supported use of this command is for dropping development supporting
databases originally loaded with the Mix.Tasks.Loaddb task. Any other use
is at your own risk.

Note that all options other than --type have default values which match the
corresponding default values in Mix.Task.Loaddb.

 Options

	--ds-name - The Datastore Name used to identify the Datastore in the
application. Specifically references parts of the supervisory system
which manage the Datastore Contexts. This is an optional string
value which defaults to "ms_devsupport_database".

	--db-host - The IP address or resolvable host name of the database
server which hosts the Datastore to drop. This is an optional string
value which defaults to "127.0.0.1".

	--db-port - The TCP port on which the database server is listening for
connections. This is an optional integer value which defaults to 5432.

	--db-name - The name of the database which backs the Datastore on the
database server. Often times this will be the same as the Datastore
Name, but not necessarily so. This is an optional string value which
defaults to "ms_devsupport_database".

	--db-role-prefix- a string value which is used to prefix the owner and
login Context database role names created by the Mix.Tasks.Loaddb mix
task. This value is optional and defaults to "ms_devsupport".

	--context-name - the name by which the login Context can be found
withing the application. This is an optional string value which defaults
to "ms_devsupport_context".

	--dbadmin-pwd - the password of the ms_syst_privileged database role
on the target database. This is an optional string value which defaults
to "musesystems.publicly.known.insecure.devsupport.password".

	--clean-all - if this switch is set, this task will delete all Datastore
migration files created for the Component, including those that might not
be related to the Datastore being dropped. This is done by simply
deleting the path directory provided in the --destination option. This
switch will supersede the --clean option if both switches are set.

	--clean or -c - deletes any Datastore migrations built for the
Datastore type identified by the --type switch. This switch is
superseded by the --clean-all option.

	--type or -t - identifies the type of Datastore to clean when using
the --clean option. This option becomes required if the --clean
switch is set.

	--destination or -d - establishes the path in which Datastore
migrations were built. This option is only used if either the
--clean-all or --clean options are also set. This is an optional
value which defaults to "priv/database".

 Summary

 Functions

 run(args)

 Callback implementation for Mix.Task.run/1.

 Functions

 Link to this function

 run(args)

 @spec run([binary()]) :: :ok

Callback implementation for Mix.Task.run/1.

mix loaddb

Loads the identified Datastore "type" into a testing/development oriented
database server.

 Options

Most options come with reasonable default values for most development/testing
scenarios. Specific circumstances may require overriding the default values
by explicitly providing the options documented below.
	--type - the Datastore "type" which to load to the database. This is
a required string value and for which there is no default. If the
--build option is also set, the value of this option will indicate the
type of the Datastore migrations to build.

	--db-host - a string indicating the host address of the database server.
This can be an IP address or resolvable DNS entry. The default value is
127.0.0.1.

	--db-port - an integer indicating the TCP port on which to contact the
database server. The default value is the standard PostgreSQL port number
5432.

	--db-name - a binary value indicating a name for the database to use.
The default database name is "ms_devsupport_database".

	--dbadmin-pwd - a binary value for the standard ms_syst_privileged
database role account created via the database bootstrapping script. The
default value is
"musesystems.publicly.known.insecure.devsupport.password".

	--ds-name - The Datastore Name used to identify the Datastore in the
application. Specifically references parts of the supervisory system
which manage the Datastore Contexts. This is an optional string
value which defaults to "ms_devsupport_database".

	--ds-code - a binary value providing a Datastore level salting value
used in different hashing operations. The default value is
"musesystems.publicly.known.insecure.devsupport.code"

	--db-salt - a binary value providing a Datastore level salting value
used in different hashing operations. The default value is
"musesystems.publicly.known.insecure.devsupport.salt"

	--db-role-prefix - a binary value which is prefixed to the names of the
database roles created to back the Datastore Contexts. The default value
is "ms_devsupport".

	--dbadmin-pool - the number of database connections which will be opened
to support DBA or Privileged operations. The default value is 1.

	--context-name - a binary value which provides a unique context name for
the login Context identified by this function. The default value is
"ms_devsupport_context".

	--context-pwd - a binary value which is the database password that the
login Datastore Context uses to log into the database. The default value
is "musesystems.publicly.known.insecure.devsupport.apppassword".

	--context-pool - the number of database connections the login Context
will establish from the application. The default value is 5.

	--desc-prefix - a binary value which is prefixed to the descriptions of
the created database contexts and which appear in the database role
descriptions. The default value is "Muse Systems DevSupport".

	--build - a switch which, if set, indicates that the Mix.Task.Builddb
process should be called to build the Datastore migrations prior to
migrating the new Datastore. See the documentation for
Mix.Tasks.Builddb for more information about that process. By default,
Datastore migrations are not built.

	--source - only applies if the --build option is set. Establishes the
database source code directory from which to build migrations. See the
documentation for Mix.Tasks.Builddb for more.

	--destination - only applies if the --build option is set. Sets the
destination path into which Datastore migrations will be built. See the
documentation for Mix.Tasks.Builddb for more.

	--clean - a switch which indicates if the Datastore migrations to be
built should be deleted and entirely rebuilt from the database source
code. This switch is only used if the --build option is also set. See
the documentation for Mix.Tasks.Builddb for more.

 Summary

 Functions

 run(args)

 Callback implementation for Mix.Task.run/1.

 Functions

 Link to this function

 run(args)

 @spec run([binary()]) :: :ok

Callback implementation for Mix.Task.run/1.

 OEBPS/dist/epub-TCI3LGHF.js
(()=>{var d=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var c="ex_doc:settings",h={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=h,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(c);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._storeSettingsLegacy(),localStorage.setItem(c,JSON.stringify(this._settings))}catch(t){console.error(`Failed to persist settings: ${t}`)}}_loadSettingsLegacy(){localStorage.getItem("tooltipsDisabled")!==null&&(this._settings={...this._settings,tooltips:!1}),localStorage.getItem("night-mode")==="true"&&(this._settings={...this._settings,nightMode:!0}),this._settings.nightMode===!0&&(this._settings={...this._settings,theme:"dark"})}_storeSettingsLegacy(){this._settings.tooltips?localStorage.removeItem("tooltipsDisabled"):localStorage.setItem("tooltipsDisabled","true"),this._settings.nightMode!==null?localStorage.setItem("night-mode",this._settings.nightMode===!0?"true":"false"):localStorage.removeItem("night-mode"),this._settings.theme!==null?(localStorage.setItem("night-mode",this._settings.theme==="dark"?"true":"false"),this._settings.nightMode=this._settings.theme==="dark"):(delete this._settings.nightMode,localStorage.removeItem("night-mode"))}},f=new s;function l(){["warning","info","error","neutral","tip"].forEach(t=>{i(`blockquote h3.${t}, blockquote h4.${t}`).forEach(e=>{e.closest("blockquote").classList.add(t)})})}document.addEventListener("click",function(o){if(window.innerWidth<=768){let t=o.target.closest('a[href^="#"]');if(t){o.preventDefault();let e=t.getAttribute("href").substring(1),n=document.getElementById(e);if(n){let u=n.getBoundingClientRect().top+window.scrollY-45;window.scrollTo({top:u,behavior:"smooth"})}}}});var m="hll";function g(){p()}function p(){i("[data-group-id]").forEach(t=>{let e=t.getAttribute("data-group-id");t.addEventListener("mouseenter",n=>{a(e,!0)}),t.addEventListener("mouseleave",n=>{a(e,!1)})})}function a(o,t){i(`[data-group-id="${o}"]`).forEach(n=>{n.classList.toggle(m,t)})}r(()=>{g(),l()});})();

