

 mscmp_syst_utils_data

 v0.1.0

 Table of contents

 	
 Modules

 	Msutils.Data.Types

 	API

 	Msutils.Data

 	Exceptions

 	Mserror.DataUtilsError

Msutils.Data.Types

Data types for the mscmp_syst_utils_data component.

 Summary

 Types

 common_validators()

 Establishes the known common changeset validator options.

 Types

 common_validators()

 @type common_validators() ::
 :internal_name | :display_name | :external_name | :user_description

Establishes the known common changeset validator options.

Msutils.Data

This is a set of utilities for working with data which is generally
useful across components.
Currently included in these utilities are:
	ETS operations
Functions wrap some typical ETS operations so that they return standard result
tuples.

	Changeset validators
Common validation functions which can be used to validate changesets across
Components.

Note
Changeset Validators do not check their opts parameter for validity. This
is expected to be handled by the caller prior to calling these functions. See
the Msutils.Data.common_validator_options/1 macro for more information on
adding the standard options which can be used to validate changesets.

 Summary

 Changeset Validators

 validate_display_name(changeset, opts)

 Changeset validation ensuring that the display_name field is valid and
meets minimum and maximum length requirements.

 validate_external_name(changeset, opts)

 Changeset validation ensuring that the external_name field is valid and
meets minimum and maximum length requirements.

 validate_internal_name(changeset, opts)

 Changeset validation ensuring that the internal_name field is valid and
meets minimum and maximum length requirements.

 validate_syst_defined_changes(changeset, prohibited_fields)

 Changeset validation ensuring that, if the record is set as syst_defined,
the prohibited fields are not changed.

 validate_user_description(changeset, opts)

 Changeset validation ensuring that the user_description field is set if
required and allowed and meets minimum and maximum length requirements.

 Ets Operations

 ets_delete(table, key)

 Deletes an entry from an ETS table.

 ets_insert(table, data)

 Inserts data into an ETS table.

 ets_lookup_element(table, key, element_index)

 Looks up an element in an ETS table by key and position.

 ets_update_element(table, key, updated_data)

 Updates an element in an ETS table.

 Functions

 common_validator_options(selected_options)

 Returns a NimbleOptions struct with the requested common validator options for
use with the Changeset validation functions from the Msutils.Data module.

 Changeset Validators

 validate_display_name(changeset, opts)

 @spec validate_display_name(Ecto.Changeset.t(), Keyword.t()) :: Ecto.Changeset.t()

Changeset validation ensuring that the display_name field is valid and
meets minimum and maximum length requirements.
Parameters
	changeset - an Ecto.Changeset struct to be validated.

	opts - options which configure the validation checks of the functions.

Options
	:min_display_name_length (pos_integer/0) - Sets the minimum grapheme length of display_name values. The default value is 6.

	:max_display_name_length (pos_integer/0) - Sets the maximum grapheme length of display_name values. The default value is 64.

 validate_external_name(changeset, opts)

 @spec validate_external_name(Ecto.Changeset.t(), Keyword.t()) :: Ecto.Changeset.t()

Changeset validation ensuring that the external_name field is valid and
meets minimum and maximum length requirements.
Parameters
	changeset - an Ecto.Changeset struct to be validated.

	opts - options which configure the validation checks of the functions.

Options
	:min_external_name_length (pos_integer/0) - Sets the minimum grapheme length of external_name values. The default value is 2.

	:max_external_name_length (pos_integer/0) - Sets the maximum grapheme length of external_name values. The default value is 64.

 validate_internal_name(changeset, opts)

 @spec validate_internal_name(Ecto.Changeset.t(), Keyword.t()) :: Ecto.Changeset.t()

Changeset validation ensuring that the internal_name field is valid and
meets minimum and maximum length requirements.
Parameters
	changeset - an Ecto.Changeset struct to be validated.

	opts - options which configure the validation checks of the functions.

Options
	:min_internal_name_length (pos_integer/0) - Sets the minimum grapheme length of internal_name values. The default value is 6.

	:max_internal_name_length (pos_integer/0) - Sets the maximum grapheme length of internal_name values. The default value is 64.

 validate_syst_defined_changes(changeset, prohibited_fields)

 @spec validate_syst_defined_changes(Ecto.Changeset.t(), [atom()]) ::
 Ecto.Changeset.t()

Changeset validation ensuring that, if the record is set as syst_defined,
the prohibited fields are not changed.
Parameters
	changeset - an Ecto.Changeset struct to be validated.

	prohibited_fields - a list of field names for which changes are
prohibited if the record is set as syst_defined.

 validate_user_description(changeset, opts)

 @spec validate_user_description(Ecto.Changeset.t(), Keyword.t()) :: Ecto.Changeset.t()

Changeset validation ensuring that the user_description field is set if
required and allowed and meets minimum and maximum length requirements.
Parameters
	changeset - an Ecto.Changeset struct to be validated.

	opts - options which configure the validation checks of the functions.

Options
	:min_user_description_length (pos_integer/0) - Sets the minimum grapheme length of user_description values. The default value is 6.

	:max_user_description_length (pos_integer/0) - Sets the maximum grapheme length of user_description values. The default value is 1000.

 Ets Operations

 ets_delete(table, key)

 @spec ets_delete(:ets.table(), term()) :: :ok | {:error, Mserror.DataUtilsError.t()}

Deletes an entry from an ETS table.
Wraps the ETS :ets.delete/2 function.
Parameters
	table - the ETS table to delete from
	key - the key of the entry to delete

Returns
	:ok - if the deletion was successful
	{:error, Mserror.DataUtilsError.t()} - if there was an error during deletion

 ets_insert(table, data)

 @spec ets_insert(:ets.table(), term()) :: :ok | {:error, Mserror.DataUtilsError.t()}

Inserts data into an ETS table.
In this we wrap the ETS :ets.insert/2 function in a function that returns
an Mserror.DataUtilsError if there is an error.
Parameters
	table - the ETS table to insert the data into.

	data - the data to insert into the ETS table.

Returns
	:ok - if the data was successfully inserted into the ETS table.

	{:error, Mserror.DataUtilsError.t()} - if there was an error inserting
the data into the ETS table.

 ets_lookup_element(table, key, element_index)

 @spec ets_lookup_element(:ets.table(), term(), non_neg_integer()) ::
 {:ok, term()} | {:error, Mserror.DataUtilsError.t()}

Looks up an element in an ETS table by key and position.
Wraps the ETS :ets.lookup_element/3 function, returning a result tuple.
Parameters
	table - the ETS table to look up the element in
	key - the key to look up
	element_index - the position of the element to return

Returns
	{:ok, term()} - the element was found at the specified position
	{:error, Mserror.DataUtilsError.t()} - if there was an error during lookup

 ets_update_element(table, key, updated_data)

 @spec ets_update_element(:ets.table(), term(), term()) ::
 :ok | {:error, Mserror.DataUtilsError.t()}

Updates an element in an ETS table.
Wraps the ETS :ets.update_element/3 function.
Parameters
	table - the ETS table to update
	key - the key of the element to update
	updated_data - the new data to set

Returns
	:ok - if the update was successful
	{:error, Mserror.DataUtilsError.t()} - if there was an error during update

 Functions

 common_validator_options(selected_options)

 (macro)

 @spec common_validator_options(
 selected_options :: [Msutils.Data.Types.common_validators()]
) ::
 Macro.t()

Returns a NimbleOptions struct with the requested common validator options for
use with the Changeset validation functions from the Msutils.Data module.
The common validator options establish cross-Component standards for data
limits such as minimum and maximum lengths commonly used data fields. In many
ways, these options act as constants for common Changeset validations.
Parameters
	selected_options - selects the desired options from the common validator
option definitions. This is in the form of a list of the desired options.

Select Options
 The following are accepted for selected options:
	:internal_name

	:display_name

	:external_name

	:user_description

Mserror.DataUtilsError exception

This module defines the macro related error types for the Msutils.Data module.

 Summary

 Types

 kinds()

 Represents the available Kinds of error allowed by this Error type.

 t()

 Describes the structure of an error of generated by this exception.

 Functions

 new(kind, message, opts \\ [])

 Creates a new error struct with the given kind, message, and options.

 Types

 kinds()

 @type kinds() :: :ets_operations | :macro

Represents the available Kinds of error allowed by this Error type.
Available Kinds
	:macro - Indicates that there were compilation errors in the macros provided by
this Component. This will often times be due to invalid parameters being
passed to the macros.

	:ets_operations - Indicates that there was an error in an ETS operation.

 t()

 @type t() :: %Mserror.DataUtilsError{
 __exception__: true,
 __mscomponent__: module(),
 __mserror__: true,
 cause: t() | Exception.t() | term() | nil,
 context: MscmpSystError.Types.Context.t() | nil,
 kind: kinds(),
 message: String.t()
}

Describes the structure of an error of generated by this exception.
The cause attribute allows for errors to be nested.
Attributes
The following attributes are those which are set or modified by the
user when working with errors.
	kind - The kind of error, see kinds/0 for the available Kinds.

	message - A string describing the error.

	context - contextual information for better understanding the
error. If provided, the context should be of type
MscmpSystError.Types.Context.t/0.

	cause - The cause of the error, which can be an exception, an error tuple,
or any other term.

Internal Attributes
These attributes have their values set at compile time and are used
internally by the MscmpSystError framework. They are not to be altered
by user code. Reading these attributes in user code is safe, however.
	__mserror__ - Always true, indicates that this error is compatible
with the MscmpSystError framework.

	__mscomponent__ - The component that generated the error.

 Functions

 new(kind, message, opts \\ [])

 @spec new(kind :: kinds(), message :: String.t(), opts :: keyword()) :: t()

Creates a new error struct with the given kind, message, and options.
Parameters
	kind - The kind of error, see kinds/0 for the available Kinds.

	message - A string describing the error.

	opts - A keyword list of additional options.

Options
	:context - contextual information for better understanding the
error. If provided, the context should be of type
MscmpSystError.Types.Context.t/0.

	:cause - The cause of the error, which can be an exception, an error tuple,
or any other term.

	:parse_error - An error result conforming with
MscmpSystError.Types.parsable_error/0 to be parsed overriding
certain attributes of the exception struct. When provided the
message parameter is treated as a default message which can be
overridden by a message supplied by the error result provided to this
option. The cause attribute of the exception struct will be set to
a value derived from this option's value, ignoring the :cause
option if provided; typically you would not provide both
:parse_error and :cause in the same call to new/3.

Returns
Returns a struct of this error type with the error details.

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

