

 mssub_mcp

 v0.1.0

 Table of contents

 	Modules

 	DevSupport

 	MssubMcp.Types

 	MssubMcp.Updater

 	MssubMcp

DevSupport

 Summary

 Functions

 start_dev_environment(db_kind \\ :unit_testing)

 stop_dev_environment()

 Functions

 Link to this function

 start_dev_environment(db_kind \\ :unit_testing)

 Link to this function

 stop_dev_environment()

MssubMcp.Types

Defines data types used in operating the MCP Subsystem.

 Summary

 Types

 session_name()

 tenant_bootstrap_params()

 tenant_bootstrap_result()

 Types

 Link to this type

 session_name()

 @type session_name() :: MscmpSystSession.Types.session_name()

 Link to this type

 tenant_bootstrap_params()

 @type tenant_bootstrap_params() :: %{
 optional(:owner) => MscmpSystInstance.Types.owner_params(),
 optional(:access_account) => MscmpSystAuthn.Types.access_account_params(),
 optional(:authenticator_type) => MscmpSystAuthn.Types.authenticator_types(),
 optional(:account_identifier) => MscmpSystAuthn.Types.account_identifier(),
 optional(:credential) => MscmpSystAuthn.Types.credential(),
 optional(:mfa_credential) => MscmpSystAuthn.Types.credential() | nil,
 optional(:application) =>
 MscmpSystInstance.Types.application_id()
 | MscmpSystInstance.Types.application_name()
 | :mcp
}

 Link to this type

 tenant_bootstrap_result()

 @type tenant_bootstrap_result() :: %{
 :owner_id => MscmpSystInstance.Types.owner_id(),
 :access_account_id => MscmpSystAuthn.Types.access_account_id(),
 optional(:instance_id) => MscmpSystInstance.Types.instance_id()
}

MssubMcp.Updater

Provides an API for bootstrapping and migration application for the MCP
subsystem.

 Summary

 Functions

 child_spec(opts)

 start_link(opts)

 See MssubMcp.Runtime.Datastore.start_link/1.

 Functions

 Link to this function

 child_spec(opts)

 @spec child_spec(Keyword.t()) :: Supervisor.child_spec()

 Link to this function

 start_link(opts)

 @spec start_link(Keyword.t()) :: :ignore | {:error, MscmpSystError.t() | any()}

See MssubMcp.Runtime.Datastore.start_link/1.

MssubMcp

API for the Master Control Program Subsystem.
The Master Control Program Subsystem provides global services such as tenant and
Application Instance management, global user authentication, global system
configuration services, and a global enumeration service.

 Summary

 Instance Manager Runtime

 start_all_applications(startup_options, opts \\ [])

 Starts all Applications and each Application's child Instances.

 start_application(application, startup_options, opts \\ [])

 Starts the requested Application and its child Instances.

 start_instance(instance, startup_options, opts \\ [])

 Starts an Instance and places it under the appropriate Application's
supervisor.

 stop_all_applications(opts \\ [])

 Stops all Applications, Application Supervisors, and their child Instances.

 stop_application(application, opts \\ [])

 Shuts down the Supervisor process of the requested Application and all of its
child processes, including Instances.

 stop_instance(instance, opts \\ [])

 Stops an Instance.

 Instance Applications

 create_application(application_params)

 Creates a new Application record.

 create_application_context(application_context_params)

 Creates Application Context records for the identified Application.

 delete_application_context(application_context_id)

 Deletes an Application Context record from the system

 get_application(application, opts \\ [])

 Returns a populated Msdata.SystApplications struct for the requested record.

 get_application_context_id_by_name(application_context_name)

 Retrieves the Application Context record ID for the record matching provided
Internal Name argument.

 get_application_id_by_name(application_name)

 Returns the Application record ID for the requested Application Internal Name;
raises on error.

 list_application_contexts(application_id \\ nil)

 Returns a list of Application Context records.

 update_application(application, application_params)

 Updates an existing Application record using the provided parameters as new
values.

 update_application_context(application_context, application_context_params)

 Updates an existing Application Context record.

 Instance Types

 create_instance_type(instance_type_params)

 Creates a new Instance Type record via the MscmpSystEnums service.

 create_instance_type_application(instance_type_id, application_id)

 Creates an Instance Type/Application association.

 delete_instance_type(instance_type_name)

 Deletes an Instance Type from the MscmpSystEnums service.

 delete_instance_type_application(instance_type_application)

 Disassociates the Instance Type/Application support relationship.

 get_instance_type_by_name(instance_type_name)

 Returns the Instance Type record for the given Internal Name; raises on error.

 get_instance_type_default()

 Returns the Instance Type record which is configured as the system default
Instance Type.

 update_instance_type(instance_type_name, instance_type_params \\ %{})

 Updates an existing Instance Type record via the MscmpSystEnums service.

 update_instance_type_context(instance_type_context, instance_type_context_params \\ %{})

 Updates Instance Type Context default values which are applied to new Instance
Contexts.

 Owners

 create_owner(owner_params)

 Creates a new Owner record.

 get_owner_by_name(owner_name)

 Retrieves an Owner record by its internal name.

 get_owner_id_by_name(owner_name)

 Retrieves the Owner record ID by Owner internal name.

 get_owner_state_by_name(owner_state_name)

 Returns the Owner State Enumeration record for the given Internal Name argument.

 get_owner_state_default(functional_type \\ nil)

 Returns the Owner State Enumeration record which is configured as being
default.

 owner_exists?(opts \\ [])

 Tests to see if a specific Owner, or any Owner, record exists in the database.

 purge_owner(owner)

 Removes an Owner record from the system.

 update_owner(owner, update_params)

 Updates an Owner record.

 Instances

 create_instance(instance_params)

 Creates a new Instance record.

 get_default_instance_state_ids()

 Returns a Keyword List of the default values for each Instance State's
functional type.

 get_instance_by_name(instance_name)

 Returns the SystInstances record identified by its internal name.

 get_instance_datastore_options(instance, startup_options)

 Retrieves the Datastore Options based on the Instance database record and the
provided Startup Options.

 get_instance_id_by_name(instance_name)

 Returns the ID of the Instance record as identified by its internal name.

 get_instance_state_by_name(instance_state_name)

 Retrieves the Instance State Enumeration record identified by the provided
Internal Name.

 get_instance_state_default(functional_type \\ nil)

 Returns the Instance State Enumeration record which is configured as being
default.

 initialize_instance(instance_id, startup_options, opts \\ [])

 Initializes an uninitialized Instance.

 purge_instance(instance, startup_options)

 Purges an eligible Instance from the system.

 set_instance_state(instance, instance_state_id)

 Sets the Instance State of an Instance.

 Authentication Enums

 get_credential_type_by_name(credential_type_name)

 Returns the Credential Type record for the given Internal Name; raises on error.

 get_credential_type_default(functional_type \\ nil)

 Returns the Credential Type Enumeration record which is configured as being
default.

 get_identity_type_by_name(identity_type_name)

 Returns the Identity Type record for the given Internal Name; raises on error.

 get_identity_type_default(functional_type \\ nil)

 Returns the Identity Type Enumeration record which is configured as being
default.

 Access Accounts

 access_account_exists?(opts \\ [])

 Tests to see if a specific Access Account, or any Access Account, record
exists in the database.

 create_access_account(access_account_params)

 Create a new Access Account.

 get_access_account_by_name(access_account_name)

 Retrieves a fully populated Access Account record as found by internal name.

 get_access_account_id_by_name(access_account_name)

 Looks up an Access Account record ID by its internal name.

 get_access_account_state_by_name(access_account_state_name)

 Returns the Access Account State record for the given Internal Name; raises on
error.

 get_access_account_state_default(functional_type \\ nil)

 Returns the Access Account State Enumeration record which is configured as
being default.

 purge_access_account(access_account)

 Purges the requested Access Account if the Access Account State is of
a purge eligible functional type.

 update_access_account(access_account, access_account_params)

 Updates the maintainable fields of a given Access Account record.

 Access Account/Instance Assocs.

 accept_instance_invite(access_account_instance_assoc)

 Accepts the invitation made to an Access Account to access an Instance.

 accept_instance_invite(access_account_id, instance_id)

 Accepts the invitation made to an Access Account to access an Instance,
referencing the record by its composite key values.

 decline_instance_invite(access_account_instance_assoc)

 Declines an unaccepted/unexpired invitation made to an Access Account to
access an Instance.

 decline_instance_invite(access_account_id, instance_id)

 Declines an unaccepted/unexpired invitation made to an Access Account to
access an Instance, referencing the record by its composite key values.

 invite_to_instance(access_account_id, instance_id, opts \\ [])

 Invites or re-invites an Access Account to establish access rights to a
specific Instance.

 revoke_instance_access(access_account_instance_assoc)

 Revokes the access or invitation to access an Instance from the given Access
Account.

 revoke_instance_access(access_account_id, instance_id)

 Revokes the access or invitation to access an Instance from the given Access
Account/Credential Type combination, referencing the record by its composite
key values.

 Password Rules

 create_disallowed_password(password)

 Adds a new password to the Disallowed Passwords list.

 create_owner_password_rules(owner_id, insert_params)

 Creates Owner Password Rules for the requested Owner.

 delete_disallowed_password(password)

 Removes a password from the disallowed passwords list.

 delete_owner_password_rules(owner_id)

 Deletes an Owner Password Rules record from the system.

 disallowed_passwords_populated?()

 Tests if the Disallowed Password List has any entries or not.

 get_access_account_password_rule(access_account_id)

 Retrieves the Password Rules to apply for a requested Access Account as
identified by its record ID.

 get_access_account_password_rule!(access_account_id)

 Retrieves the Password Rules to apply for a requested Access Account as
identified by its record ID, raising on error.

 get_generic_password_rules(pwd_rules_struct, access_account_id \\ nil)

 Converts a Global or Owner Password Rule struct into the generic map based
Password Rule required by some functions.

 get_global_password_rules()

 Retrieves the currently active Global Password Rules.

 get_global_password_rules!()

 Retrieves the currently active Global Password Rules, raising on error.

 get_owner_password_rules(owner_id)

 Retrieves the currently active Owner Password Rules for the requested Owner.

 get_owner_password_rules!(owner_id)

 Retrieves the currently active Owner Password Rules for the requested Owner,
raising on error.

 load_disallowed_passwords(password_list, opts \\ [])

 Bulk loads a list of passwords into the Disallowed Passwords database table.

 password_disallowed(password)

 Indicates whether the requested password is disallowed.

 password_disallowed?(password)

 Indicates whether the requested password is disallowed, raising on error.

 test_credential(access_account_id, plaintext_pwd)

 Tests a candidate password against the effective Password Rules for a given
Access Account.

 update_global_password_rules(update_params)

 Updates the Global Password Rules with new values.

 update_global_password_rules(global_password_rules, update_params)

 Updates the Global Password Rules with new values using a caller provided
data source record.

 update_owner_password_rules(owner, update_params)

 Updates the Owner Password Rules with new values.

 verify_password_rules(test_rules, standard_rules \\ nil)

 Compares a "Test" set of Password Rules against a "Standard" set of Password
Rules and reports on which of the "Test" Rules are considered less stringent
than the "Standard" Rules.

 verify_password_rules!(test_rules, standard_rules \\ nil)

 Compares a "Test" set of Password Rules against a "Standard" set of Password
Rules and reports on which of the "Test" Rules are considered less stringent
than the "Standard" Rules, raising on error.

 Network Rules

 create_disallowed_host(host_address)

 Adds a host IP address to the global disallowed hosts list.

 create_global_network_rule(insert_params)

 Creates a new Global Network Rule using the provided parameters.

 create_instance_network_rule(instance_id, insert_params)

 Creates a new Instance Network Rule using the provided parameters.

 create_owner_network_rule(owner_id, insert_params)

 Creates a new Owner Network Rule using the provided parameters.

 delete_disallowed_host(disallowed_host)

 Deletes a host IP address from the Disallowed Hosts list based on either a
Msdata.SystDisallowedHosts record or the ID of such a
record.

 delete_disallowed_host_addr(host_addr)

 Deletes a host IP address from the Disallowed Hosts list as looked up by the
host IP address.

 delete_global_network_rule(global_network_rule_id)

 Deletes an existing Global Network Rule record as referenced by the record ID.

 delete_instance_network_rule(instance_network_rule_id)

 Deletes an existing Instance Network Rule record as referenced by the record
ID.

 delete_owner_network_rule(owner_network_rule_id)

 Deletes an existing Owner Network Rule record as referenced by the record ID.

 get_applied_network_rule(host_address, instance_id \\ nil, instance_owner_id \\ nil)

 Returns the Network Rule which should be applied for the given Host IP Address.

 get_applied_network_rule!(host_address, instance_id \\ nil, instance_owner_id \\ nil)

 Returns the Network Rule which should be applied for the given Host IP
Address, raising on error.

 get_disallowed_host_record_by_host(host_addr)

 Retrieves a Disallowed Host record from the database as identified by its host
address.

 get_disallowed_host_record_by_host!(host_addr)

 Retrieves a Disallowed Host record from the database as identified by its host
address, raising on error.

 get_disallowed_host_record_by_id(disallowed_host_id)

 Retrieves a Disallowed Host record by the record ID.

 get_disallowed_host_record_by_id!(disallowed_host_id)

 Retrieves a Disallowed Host record by the record ID, raising on error.

 get_global_network_rule(global_network_rule_id)

 Retrieves a Global Network Rule record based on its record ID.

 get_global_network_rule!(global_network_rule_id)

 Retrieves a Global Network Rule record based on its record ID, raising on
error.

 get_instance_network_rule(instance_network_rule_id)

 Retrieves a Instance Network Rule record based on its record ID.

 get_instance_network_rule!(instance_network_rule_id)

 Retrieves a Instance Network Rule record based on its record ID, raising on
error.

 get_owner_network_rule(owner_network_rule_id)

 Retrieves a Owner Network Rule record based on its record ID.

 get_owner_network_rule!(owner_network_rule_id)

 Retrieves a Owner Network Rule record based on its record ID, raising on
error.

 host_disallowed(host_address)

 Indicates whether the provided host IP address is to be denied access to the
system.

 host_disallowed?(host_address)

 Indicates whether the provided host IP address is to be denied access to the
system, raising on error.

 update_global_network_rule(global_network_rule, update_params)

 Updates an existing Global Network Rule with new values.

 update_instance_network_rule(instance_network_rule, update_params)

 Updates an existing Instance Network Rule with new values.

 update_owner_network_rule(owner_network_rule, update_params)

 Updates an existing Owner Network Rule with new values.

 Account Code

 create_or_reset_account_code(access_account_id, opts \\ [])

 Creates a new Account Code for an Access Account or resets the Account Code if
is already exists.

 get_account_code_by_access_account_id(access_account_id)

 Retrieves the Account Code Identity record defined for the requested Access
Account if one exists.

 identify_access_account_by_code(account_code, owner_id)

 Identifies an Access Account by its Account Code identifier.

 revoke_account_code(access_account_id)

 Revokes a previously create Account Code Identity from an Access Account,
deleting it from the system.

 Authenticator Management

 access_account_credential_recoverable!(access_account_id)

 Indicates if an Access Account's Password Credential is recoverable or not.

 create_authenticator_api_token(access_account_id, opts \\ [])

 Creates an API Token Authenticator for the requested Access Account.

 create_authenticator_email_password(access_account_id, email_address, plaintext_pwd, opts \\ [])

 Creates an Email/Password Authenticator for an Access Account.

 request_identity_validation(target_identity, opts \\ [])

 Requests the creation of a Validation Token Authenticator for the specified
Identity.

 request_password_recovery(access_account_id, opts \\ [])

 Requests to start a Password Credential recovery process for the specified
Access Account.

 reset_password_credential(access_account_id, new_credential)

 Allows for an existing password to be changed to a new password.

 revoke_api_token(identity)

 Revokes the request API Token Authenticator by deleting it from the system.

 revoke_password_recovery(access_account_id)

 Revokes the Recovery Token Authenticator for a previously initiated Password
Credential recovery.

 revoke_validator_for_identity_id(target_identity_id)

 Revokes a Validation Authenticator ("Validator") issued for the requested
Identity.

 update_api_token_external_name(identity, external_name)

 Updates the External Name value of an existing API Token Identity.

 Authentication

 authenticate_api_token(identifier, plaintext_token, host_addr, instance_id, opts \\ [])

 Identities and authenticates an Access Account using an API Token
Authenticator.

 authenticate_email_password(authentication_state, opts \\ [])

 Identifies and authenticates an Access Account on the basis of a starting
Authentication State value constructed for Email/Password authentication.

 authenticate_email_password(email_address, plaintext_pwd, host_address, opts \\ [])

 Identities and authenticates an Access Account using an Email/Password
Authenticator.

 authenticate_recovery_token(identifier, plaintext_token, host_addr, opts \\ [])

 Confirms an Access Account's password Recovery Token Authenticator.

 authenticate_validation_token(identifier, plaintext_token, host_address, opts \\ [])

 Confirms a specific Access Account Identity record as being valid for use.

 Session Management

 create_session(session_data, opts \\ [])

 Creates a new session returning the session name for future reference.

 delete_session(session_name)

 Deletes the named Session record from the database.

 generate_session_name()

 Generates a random Session Name using the current formulation for automatic
session name generation.

 get_session(session_name, opts \\ [])

 Retrieves the Session Data for the named Session and resets the Session
Expiration.

 purge_expired_sessions(opts \\ [])

 Purges the database of previously expired Session records.

 refresh_session_expiration(session_name, opts \\ [])

 Refreshes the Session expiration date/time of the identified record.

 update_session(session_name, session_data, opts \\ [])

 Replaces the Session Data of the named Session record with the Session Data
provided.

 Permissions

 compare_scopes(test_scope, standard_scope)

 Compares two Scope values and returns a value indicating the relative
expansiveness of Scope.

 get_effective_perm_grants(selector, opts \\ [])

 Provides the effective Permissions/Rights/Scopes for the user context
identified by the selector as calculated from all effective grants and
revocations.

 grant_perm_role(selector, perm_role_id)

 Grants a Permission Role to the given selector.

 list_perm_denials(selector, opts \\ [])

 List all explicit denials of Permissions from the identified user context.

 list_perm_grants(selector, opts \\ [])

 Lists all of the Permission Role records granted to the user context
identified by the selector, including the Rights/Scopes of the grants.

 revoke_perm_role(selector, perm_role_id)

 Revokes a previously granted Permission Role from the given selector.

 MCP Processing

 bootstrap_tenant(params)

 Bootstraps the initial setup of either the MCP Application Platform or a new
tenant.

 process_operation(operation)

 Processes the given function in the context of the MCP services & Datastore.

 start_mcp_service_context()

 Establishes MCP Subsystem process references in the calling process's process
dictionary.

 stop_mcp_service_context(replacement_service_names \\ {nil, nil, nil})

 Unsets the MCP Subsystem service references from the process's Process
Dictionary.

 Functions

 get_perm_role_id_by_name(perm_func_type_name, perm_role_name)

 Retrieves the Permission Role record ID as found by its functional type name
and Internal Name.

 get_setting_value(setting_name, setting_type)

 Retrieves the value of the given type for the requested setting.

 get_setting_values(setting_name)

 Retrieves all values associated with the requested setting.

 list_all_settings()

 Retrieves all values for all settings.

 set_setting_value(setting_name, setting_type, setting_value)

 Sets the value of any one setting type for the named setting.

 set_setting_values(setting_name, update_params)

 Sets one or more of the available setting types for the named setting.

 Instance Manager Runtime

 Link to this function

 start_all_applications(startup_options, opts \\ [])

 @spec start_all_applications(map(), Keyword.t()) :: :ok | {:error, MscmpSystError.t()}

Starts all Applications and each Application's child Instances.
This function calls the start_application/3 function for each Application
configured in the system. See the documentation for start_application/3
for more information about this function and the available parameters.

 Link to this function

 start_application(application, startup_options, opts \\ [])

 @spec start_application(
 MscmpSystInstance.Types.application_id() | Msdata.SystApplications.t(),
 map(),
 Keyword.t()
) :: :ok | {:error, MscmpSystError.t()}

Starts the requested Application and its child Instances.
For the requested Application, start a DynamicSupervisor under which to
supervise all of the services related to that Application including its child
Instances.
Once the Application supervisor is started any child Instances which are in a
start-eligible status are started under the Application supervisor. The
Instance startup process starts each Instance asynchronously and concurrently.
The instance startup process will also upgrade each Instance Datastore to the
current version of the application, if required. As such, you should be
prepared for Application startup to be long running.

 Parameters

	application - either the record ID or the
Msdata.SystApplications struct representing the
Application to start.

	startup_options - a map of values containing the Startup Options
obtained from the MscmpSystOptions component.

	opts - a Keyword List of optional values used during the initialization
process. The available options include:
	max_concurrency - the maximum number of Instances to start
concurrently. This defaults to the greater of 1 or one quarter of the
value returned by System.schedulers_online/0 floored.

	other available options are passed to start_instance/3. See the
documentation for start_instance/3 for the options it is able to accept.

 Link to this function

 start_instance(instance, startup_options, opts \\ [])

 @spec start_instance(
 MscmpSystInstance.Types.instance_id() | Msdata.SystInstances.t(),
 map(),
 Keyword.t()
) :: :ok | {:error, MscmpSystError.t()}

Starts an Instance and places it under the appropriate Application's
supervisor.
An Instance is essentially a tenant environment running a specific
Application. Each environment's runtime characteristics are independent of
other environments configured to run in the same system.
To be started the Instance must be in an Instance State of either functional
type instance_states_initialized or instance_states_active. Trying to
start an Instance in other Instance States will result in an error.
Note that we assume that the Application supervisor is already started and is
ready to start child processes.

 Parameters

	instance - either the record ID or the
Msdata.SystInstances struct of the Instance to start.

	startup_options - a map of values containing the Startup Options
obtained from the MscmpSystOptions component.

	opts - a Keyword List of optional values used during the initialization
process. The available options include:
	migrating_state_id - the record ID of the Instance State to use while
the starting Instance is being updated to the most current database
definition of the application. If not provided the currently configured
default Instance State for functional type instance_states_migrating
will be used.

	active_state_id - the record ID of the Instance State to use
indicating that the Instance is ready to accept user workloads. If not
provided the currently configured default Instance State for functional
type instance_states_active will be used.

	failure_state_id - the record ID of the Instance State to use
indicating that the Instance startup process has failed and that the
Instance is in an inconsistent state. If not provided the currently
configured default Instance State for functional type
instance_states_failure will be used.

	migration_bindings - this a Keyword List containing values that will
be substituted into the migration SQL files used to update a Datastore
to the current version of the Application. Usually, there is no need to
provide this option as the most common migration bindings are
automatically generated from Instance record data.

 Link to this function

 stop_all_applications(opts \\ [])

 @spec stop_all_applications(Keyword.t()) :: :ok | {:error, MscmpSystError.t()}

Stops all Applications, Application Supervisors, and their child Instances.
This function will call stop_application/2 for each Application configured
in the system. For more information about the available options and behaviors
of Application shutdown, please see the documentation for
stop_application/2.

 Link to this function

 stop_application(application, opts \\ [])

 @spec stop_application(
 MscmpSystInstance.Types.application_id() | Msdata.SystApplications.t(),
 Keyword.t()
) :: :ok | {:error, MscmpSystError.t()}

Shuts down the Supervisor process of the requested Application and all of its
child processes, including Instances.

 Parameters

	application - either the record ID or the
Msdata.SystApplications struct representing the
Application to stop.

	opts - a Keyword List of optional values used during the initialization
process. The available options include:
	supervisor_shutdown_timeout - a timeout value used to allow processes
supervised by the Application supervisor to shut down cleanly. By
default, this value is set to 60,000ms.

	Other options available are defined by and passed to the
stop_instance/2 function for Instance shutdown. See the
stop_instance/2 for full information of the available options.

 Link to this function

 stop_instance(instance, opts \\ [])

 @spec stop_instance(
 MscmpSystInstance.Types.instance_id() | Msdata.SystInstances.t(),
 Keyword.t()
) :: :ok | {:error, MscmpSystError.t()}

Stops an Instance.
Stopping an Instance shuts down its supervisor and any monitored processes.

 Parameters

	instance - either the record ID or the
Msdata.SystInstances struct of the Instance to stop.

	opts - a Keyword List of optional values used during the initialization
process. The available options include:
	supervisor_shutdown_timeout - a timeout value used to allow processes
supervised by the Instance supervisor to shut down cleanly. By default,
this value is set to 60,000ms.

	db_shutdown_timeout - a timeout value used to limit the time allowed
for a clean shutdown of the database connections used for operating
Datastore. See the documentation for
MscmpSystDb.stop_datastore/2 for more information.

 Instance Applications

 Link to this function

 create_application(application_params)

 @spec create_application(MscmpSystInstance.Types.application_params()) ::
 {:ok, Msdata.SystApplications.t()} | {:error, MscmpSystError.t()}

Creates a new Application record.
Application Subsystems need means by which they can make the MscmpSystInstance
component aware of their existence and this function provides the means by
which to do that.
Note
Note that this function is meant to expose Application record management to
the relevant Application Subsystem programs and is not intended for regular
management activities by end users.

 Parameters

	application_params - the parameters with which the new Application
record should be created. The following attribute values are available:
	internal_name - a predetermined unique identifier for the Application
record for use in programmatic contexts. This attribute is required and
must be unique in the system.

	display_name - a unique, friendly name identifying the Application and
for use in user interfaces. This attribute is required and must be unique
in the system.

	syst_description - a user facing description of the Application
including any special usage requirements or preconditions. This
attribute is required.

 Examples

Creating a new Application record.
iex> new_app_params = %{
...> internal_name: "ex_app1",
...> display_name: "Example App 1",
...> syst_description: "An example application"
...> }
iex> {:ok, %Msdata.SystApplications{}} =
...> MssubMcp.create_application(new_app_params)

 Link to this function

 create_application_context(application_context_params)

 @spec create_application_context(MscmpSystInstance.Types.application_context_params()) ::
 {:ok, Msdata.SystApplicationContexts.t()} | {:error, MscmpSystError.t()}

Creates Application Context records for the identified Application.
Application Contexts describe the Datastore Contexts each Instance is expected
to support to allow an Application to access its data. Application Subsystems
use this function to create the any required Application Context records not
already registered in the MscmpSystInstance data. Application Contexts are
used in the creation of Msdata.SystInstanceContexts records and provide a
number of default values for the Instance Context records.
Note
Note that this function is meant to expose Application record management to
the relevant Application Subsystem programs and is not intended for regular
management activities by end users.

 Parameters

	application_context_params - a map defining the attributes which will be
used to create the new Application Context record. The attributes are:
	internal_name - a predetermined unique identifier for the Application
Context record for use in programmatic contexts. This attribute is
required and must be unique in the system.

	display_name - a unique, friendly name identifying the Application
Context and for use in user interfaces. This attribute is required and
must be unique in the system.

	application_id - a reference to the ID value of the parent Application
record. A valid value for this attribute is required unless the
application_name attribute is set with the Internal Name of an existing
Application record. If both this attribute and the application_name
attributes are set, the attribute_name value will be used to resolve
the parent Application.

	application_name - a reference to the Internal Name value of an
existing Application record. This value is used to look-up the
application_id and so if this attribute is provided with a valid value,
the application_id attribute may be omitted. The value of this
attribute takes precedence over any value set explicitly in the
application_id attribute. If application_id is omitted, then this
attribute is required.

	description - a description of the Application Context's role in the
application and database. This becomes a comment in the database attached
to the database role created for the context.

	start_context - a required boolean value which establishes the default
value of derived Instance Context (Msdata.SystInstanceContexts)
start_context settings. When true, an Instance Context record derived
from this Application Context will be, by default, started as active
database connections when the parent Instance is started. False indicates
that by default Instance startup will not establish database connections
for the context. This value muse be set false for any Application
Context defining a Datastore Owner Context or any other Context where the
login_context is set false.

	login_context - a required boolean value which indicates if a derived
Instance Context is used to create database connections. If true, a
derived Instance Context record will provide login information to
establish a database connection on Instance start so long as its
start_context value is also true. If this attribute is set false
the derived Instance Context record will not define a Context capable of
logging into the database.

	database_owner_context - a required boolean value which, when true, is
designates an Application Context record as establishing the default
values for Instance Datastore/database owners. If true, the
start_context and login_context attributes must be set false as owner
contexts are not used for database connectivity not may be started during
the Instance start process.

 Examples

Create an database owner Application Context record.
iex> new_context_params = %{
...> internal_name: "ex_app2_owner",
...> display_name: "Example App 2 Owner",
...> application_name: "ex_app2",
...> description: "Database role owning objects for 'ex_app2'.",
...> start_context: false,
...> login_context: false,
...> database_owner_context: true
...> }
iex> {:ok, %Msdata.SystApplicationContexts{}} =
...> MssubMcp.create_application_context(new_context_params)

 Link to this function

 delete_application_context(application_context_id)

 @spec delete_application_context(MscmpSystInstance.Types.application_context_id()) ::
 {:ok, :deleted | :not_found} | {:error, MscmpSystError.t()}

Deletes an Application Context record from the system
Application Subsystems may use this function to remove an obsolete Application
Context record from the system.
Note
Note that this function is meant to expose Application record management to
the relevant Application Subsystem programs and is not intended for regular
management activities by end users.

Warning!
While this function will remove an Application Context record from the
system and prevent any new Instances of the Application from including the
deleted Context, existing Instance Contexts based on the Application
Context are not currently cleaned up by this function. Any clean-up of
existing Instance Context data and of associated database roles and
verification of extended clean-up activities is therefore the responsibility
of the caller.

On successful delete of the record, a success tuple is returned to the caller
({:ok, :deleted}). If the requested record is not found in the database,
the returned value is {:ok, :not_found}. Any other outcome is returned via
an error tuple.

 Parameters

	application_context_id - the record ID of the Application Context record
to delete. This value is required.

 Examples

Deleting an existing Application Context.
iex> record_id = MssubMcp.get_application_context_id_by_name("ex_app2_delctx")
iex> MssubMcp.delete_application_context(record_id)
{:ok, :deleted}
Attempting to delete a non-existent record.
iex> record_id = "00000000-0000-0000-0000-000000000000"
iex> MssubMcp.delete_application_context(record_id)
{:ok, :not_found}

 Link to this function

 get_application(application, opts \\ [])

 @spec get_application(
 MscmpSystInstance.Types.application_id()
 | MscmpSystInstance.Types.application_name(),
 Keyword.t()
) :: Msdata.SystApplications.t() | nil

Returns a populated Msdata.SystApplications struct for the requested record.

 Parameters

	application - either the record ID of the desired Application record or
its Internal Name. This parameter is required.

	opts - allows optional parameters to be provided which govern the
behavior of this function. The options are provided via a Keyword List.
The available options are:
	include_contexts - a boolean value indicating whether or not to also
retrieve the fully populated list of :application_contexts associated
with the requested Application. Contexts are returned as a standard
association of Msdata.SystApplicationContexts structs. The default
value of this option is false.

 Link to this function

 get_application_context_id_by_name(application_context_name)

 @spec get_application_context_id_by_name(
 MscmpSystInstance.Types.application_context_name()
) ::
 MscmpSystInstance.Types.application_context_id() | nil

Retrieves the Application Context record ID for the record matching provided
Internal Name argument.
When the requested Application Context record can not be found this function
returns nil. All errors raise an exception.

 Parameters

	application_context_name - the Internal Name value of the Application
Context record to search for.

 Examples

Finding an existing Application Context.
iex> id = MssubMcp.get_application_context_id_by_name("ex_app2_idctx")
iex> is_binary(id)
true
Searching for a non-existent Application Context.
iex> MssubMcp.get_application_context_id_by_name("nonexistent_context")
nil

 Link to this function

 get_application_id_by_name(application_name)

 @spec get_application_id_by_name(MscmpSystInstance.Types.application_name()) ::
 MscmpSystInstance.Types.application_id() | nil

Returns the Application record ID for the requested Application Internal Name;
raises on error.
On successful execution the record ID of the requested Application is
returned. If the requested Application Internal Name is not found nil is
returned.

 Parameters

	applicaton_name - the internal name of the desired Application record.

 Examples

 Finding an application returns its ID value.
iex> application_id = MssubMcp.get_application_id_by_name("app1")
iex> is_binary(application_id)
true
 Asking for a non-existent application returns nil.
iex> MssubMcp.get_application_id_by_name("nonexistent_application")
nil

 Link to this function

 list_application_contexts(application_id \\ nil)

 @spec list_application_contexts(MscmpSystInstance.Types.application_id() | nil) ::
 {:ok, [Msdata.SystApplicationContexts.t()]} | {:error, MscmpSystError.t()}

Returns a list of Application Context records.

 Parameters

	application_id - an optional reference to a specific application for
which to return Application Context records. By default this value is nil
which results in all Application Context records for all Applications being
returned.

 Link to this function

 update_application(application, application_params)

 @spec update_application(
 MscmpSystInstance.Types.application_id() | Msdata.SystApplications.t(),
 MscmpSystInstance.Types.application_params()
) :: {:ok, Msdata.SystApplications.t()} | {:error, MscmpSystError.t()}

Updates an existing Application record using the provided parameters as new
values.
Allows an Application Subsystem program to update its representative
Application record as required.
Note
Note that this function is meant to expose Application record management to
the relevant Application Subsystem programs and is not intended for regular
management activities by end users.

 Parameters

	application - either a fully populated Msdata.SystApplications struct
representing the current state of the Application record or the ID of the
Application record to update. This argument is required.

	application_params - a map containing the attributes with updated values
for the Application record update operation. The attributes which may be
updated are:
	display_name - a unique, friendly name identifying the Application and
for use in user interfaces. This value may not be set nil if it is
included.

	syst_description - a user facing description of the Application
including any special usage requirements or preconditions. This attribute
may not be set nil if it is included.

 Examples

Creating a new Application record.
iex> target_app_id = MssubMcp.get_application_id_by_name("ex_app2")
iex> update_app_params = %{
...> display_name: "Example App #2",
...> syst_description: "An updated example application."
...> }
iex> {:ok, %Msdata.SystApplications{display_name: "Example App #2"}} =
...> MssubMcp.update_application(target_app_id, update_app_params)

 Link to this function

 update_application_context(application_context, application_context_params)

 @spec update_application_context(
 MscmpSystInstance.Types.application_context_id()
 | Msdata.SystApplicationContexts.t(),
 MscmpSystInstance.Types.application_context_params()
) :: {:ok, Msdata.SystApplicationContexts.t()} | {:error, MscmpSystError.t()}

Updates an existing Application Context record.
Allows an Application Subsystem to update its Application Context entries as
permitted.
Note
Note that this function is meant to expose Application record management to
the relevant Application Subsystem programs and is not intended for regular
management activities by end users.

 Parameters

	application_context - this required parameter may either be the
Application Context record ID or the fully populated
Msdata.SystApplicationContexts struct to update.

	application_context_params - a map of attributes which are to be updated
with the new values of those attributes. The available attributes for
updates are:
	display_name - a unique, friendly name identifying the Application
Context and for use in user interfaces. This attribute is required and
must be unique in the system.

	description - a description of the Application Context's role in the
application and database. This becomes a comment in the database attached
to the database role created for the context.

	start_context - a required boolean value which establishes the default
value of derived Instance Context (Msdata.SystInstanceContexts)
start_context settings. When true, an Instance Context record derived
from this Application Context will be, by default, started as active
database connections when the parent Instance is started. False indicates
that by default Instance startup will not establish database connections
for the context. This value muse be set false for any Application
Context defining a Datastore Owner Context or any other Context where the
login_context is set false.

 Examples

Updating an existing Application Context record
iex> app_context_id =
...> MssubMcp.get_application_context_id_by_name("ex_app2_updctx")
iex> update_params = %{
...> display_name: "Updated Ex. App 2 Context",
...> description: "A now updated description",
...> start_context: false
...> }
iex> {:ok,
...> %Msdata.SystApplicationContexts{
...> display_name: "Updated Ex. App 2 Context",
...> description: "A now updated description",
...> start_context: false
...> }} =
...> MssubMcp.update_application_context(app_context_id, update_params)

 Instance Types

 Link to this function

 create_instance_type(instance_type_params)

 @spec create_instance_type(MscmpSystInstance.Types.instance_type_params()) ::
 {:ok, Msdata.SystEnumItems.t()} | {:error, MscmpSystError.t()}

Creates a new Instance Type record via the MscmpSystEnums service.

 Parameters

	instance_type_params - the parameters to use when creating the new
Instance Type. The attributes internal_name, display_name,
external_name, user_description, and user_options fields are required
for Instance Type creation.

 Link to this function

 create_instance_type_application(instance_type_id, application_id)

 @spec create_instance_type_application(
 MscmpSystInstance.Types.instance_type_id(),
 MscmpSystInstance.Types.application_id()
) ::
 {:ok, Msdata.SystInstanceTypeApplications.t()} | {:error, MscmpSystError.t()}

Creates an Instance Type/Application association.
Associating an Instance Type with an Application expresses that the Instance
Type can support Instances of the given application.

 Parameters

	instance_type_id - the ID value of the Instance Type which will support
Application Instances.

	application_id - the ID value which identifies the Application to be
supported.

 Link to this function

 delete_instance_type(instance_type_name)

 @spec delete_instance_type(MscmpSystInstance.Types.instance_type_name()) ::
 :ok | {:error, MscmpSystError.t()}

Deletes an Instance Type from the MscmpSystEnums service.
Note that an attempt to delete an in-use Instance Type will result in a
constraint error.

 Parameters

	instance_type_name - the internal name of an Instance Type to delete
from the system.

 Link to this function

 delete_instance_type_application(instance_type_application)

 @spec delete_instance_type_application(
 MscmpSystInstance.Types.instance_type_application_id()
 | Msdata.SystInstanceTypeApplications.t()
) :: :ok | {:error, MscmpSystError.t()}

Disassociates the Instance Type/Application support relationship.
Note that this will only prevent the creation of new Instances of the Instance
Type for the Application. Existing Instances that were created when the
relationship was valid will continue to exist.

 Parameters

	instance_type_application - This value can be either the ID value of the
Instance Type Application record or a
Msdata.SystInstanceTypeApplications struct with at
least the id field defined.

 Link to this function

 get_instance_type_by_name(instance_type_name)

 @spec get_instance_type_by_name(MscmpSystInstance.Types.instance_type_name()) ::
 Msdata.SystEnumItems.t() | nil

Returns the Instance Type record for the given Internal Name; raises on error.
On successful execution either the requested Instance Type Enumeration record
is returned or nil if the record does not exist.

 Parameters

	instance_type_name - the Internal Name of the desire Instance Type
record to return.

 Examples

Finding a Instance Type record by Internal Name.
iex> %Msdata.SystEnumItems{} =
...> MssubMcp.get_instance_type_by_name("instance_types_big")
Looking for a non-existent record.
iex> MssubMcp.get_instance_type_by_name("nonexistent_type")
nil

 Link to this function

 get_instance_type_default()

 @spec get_instance_type_default() :: Msdata.SystEnumItems.t()

Returns the Instance Type record which is configured as the system default
Instance Type.
If no system default has not been defined nil is returned.

 Examples

iex> %Msdata.SystEnumItems{} = MssubMcp.get_instance_type_default()

 Link to this function

 update_instance_type(instance_type_name, instance_type_params \\ %{})

 @spec update_instance_type(
 MscmpSystInstance.Types.instance_type_name(),
 MscmpSystInstance.Types.instance_type_params() | %{}
) :: {:ok, Msdata.SystEnumItems.t()} | {:error, MscmpSystError.t()}

Updates an existing Instance Type record via the MscmpSystEnums service.

 Parameters

	instance_type_name - the internal name of the Instance Type to target
for updating.

	instance_type_params - the parameters to use when creating the new
Instance Type. All attributes in the parameter map are optional in updating
contexts.

 Link to this function

 update_instance_type_context(instance_type_context, instance_type_context_params \\ %{})

 @spec update_instance_type_context(
 MscmpSystInstance.Types.instance_type_context_id()
 | Msdata.SystInstanceTypeContexts.t(),
 MscmpSystInstance.Types.instance_type_context_params() | %{}
) :: {:ok, Msdata.SystInstanceTypeContexts.t()} | {:error, MscmpSystError.t()}

Updates Instance Type Context default values which are applied to new Instance
Contexts.

 Parameters

	instance_type_context - this value may either be the record ID of the
target Instance Type Context record or a copy of the current
Msdata.SystInstanceTypeContexts struct representing the
target record.

	instance_type_context_params - a map containing those attributes to be
updated with their new values.
	instance_type_id - the ID value of the owning Instance Type record.
This value is required unless the instance_type_name attribute is
provided.

	instance_type_name - the internal name value of the owning Instance
Type record. This value required unless the instance_type_id value is
provided instead.

	application_context_id - the record ID value of the Application
Context with which this record is associated. This value is required
unless the application_context_name value is provided instead.

	application_context_name - the internal name value of the Application
Context with which this record is associated. This value is required
unless the application_context_id value is provided instead.

	default_db_pool_size - the default size of the database connection
pool to use for Instances Contexts created for Instances of this Instance
Type. This field defaults to 0 on Instance Type Context creation.

 Owners

 Link to this function

 create_owner(owner_params)

 @spec create_owner(MscmpSystInstance.Types.owner_params()) ::
 {:ok, Msdata.SystOwners.t()} | {:error, MscmpSystError.t()}

Creates a new Owner record.

 Parameters

	owner_params - a map of Owner record attributes to use when creating a
new record.
	internal_name - a predetermined unique identifier for the Owner
record for use in programmatic contexts. This attribute is required and
must be unique in the system.

	display_name - a unique, friendly name identifying the owner and for
use in user interfaces. This attribute is required and must be unique in
the system.

	owner_state_id - the Owner State value with which to create the new
Owner record. If not provided in the function call, this attribute will
be defaulted to the configured Owner State default value for the
enumeration.

 Link to this function

 get_owner_by_name(owner_name)

 @spec get_owner_by_name(MscmpSystInstance.Types.owner_name()) ::
 {:ok, Msdata.SystOwners.t()} | {:error, MscmpSystError.t()}

Retrieves an Owner record by its internal name.
This retrieval operation will also populate the associated records of Owner
State and the Owner State Functional Type.

 Examples

 iex> {:ok, %Msdata.SystOwners{internal_name: "owner1"}} =
 ...> MssubMcp.get_owner_by_name("owner1")

 Link to this function

 get_owner_id_by_name(owner_name)

 @spec get_owner_id_by_name(MscmpSystInstance.Types.owner_name()) ::
 {:ok, MscmpSystInstance.Types.owner_id()} | {:error, MscmpSystError.t()}

Retrieves the Owner record ID by Owner internal name.

 Examples

 iex> {:ok, owner_id} = MssubMcp.get_owner_id_by_name("owner1")
 iex> is_binary(owner_id)
 true

 Link to this function

 get_owner_state_by_name(owner_state_name)

 @spec get_owner_state_by_name(MscmpSystInstance.Types.owner_state_name()) ::
 Msdata.SystEnumItems.t() | nil

Returns the Owner State Enumeration record for the given Internal Name argument.
If the requested Internal Name does not match an existing Owner State
Enumeration record nil is returned.

 Parameters

	owner_state_name - the internal name of the Owner State to retrieve.

 Examples

Retrieving an Owner State Enumeration record.
iex> %Msdata.SystEnumItems{internal_name: "owner_states_sysdef_active"} =
...> MssubMcp.get_owner_state_by_name("owner_states_sysdef_active")
Trying to retrieve a non-existent Owner State.
iex> MssubMcp.get_owner_state_by_name("nonexistent_state")
nil

 Link to this function

 get_owner_state_default(functional_type \\ nil)

 @spec get_owner_state_default(
 MscmpSystInstance.Types.owner_state_functional_types()
 | nil
) ::
 Msdata.SystEnumItems.t()

Returns the Owner State Enumeration record which is configured as being
default.
If no Owner State record is configured as default, then nil is returned.

 Parameters

	functional_type - an optional parameter which, if provided and not
nil, will return the default Owner State record configured for the
requested functional type rather than the system default Owner State. The
default for this parameter is to treat the parameter as not provided
(nil).

 Examples

Requesting the system default Owner State.
iex> %Msdata.SystEnumItems{internal_name: "owner_states_sysdef_active"} =
...> MssubMcp.get_owner_state_default()
Requesting the default Owner State for a specific functional type.
iex> %Msdata.SystEnumItems{internal_name: "owner_states_sysdef_inactive"} =
...> MssubMcp.get_owner_state_default(:owner_states_inactive)

 Link to this function

 owner_exists?(opts \\ [])

 @spec owner_exists?(Keyword.t()) :: boolean() | {:error, MscmpSystError.t()}

Tests to see if a specific Owner, or any Owner, record exists in the database.
The functions provides an optional test on either an Owner record's Internal
Name or record ID value. If no selectivity option is made, the test checks if
any Owner records exist in the database at all.
If the Owner record(s) is found, the function returns true; other false.
Errors produce a result tuple.

 Parameters

	opts - an optional Keyword List of optional parameters which can
influence the result of calling the function. The available options are:
	owner_id - tests if a specific Owner record exists as referenced by
its record ID value.

	owner_name - tests if a specific Owner record exists as referenced by
its Internal Name.

 Examples

Check if any Owner record exists.
iex> MssubMcp.owner_exists?()
true
Check if a specific Owner record exists.
iex> MssubMcp.owner_exists?(owner_name: "owner1")
true
If a non-existent Owner is requested, the function indicates the record was
not found.
iex> MssubMcp.owner_exists?(owner_name: "nonexistent_owner")
false

 Link to this function

 purge_owner(owner)

 @spec purge_owner(MscmpSystInstance.Types.owner_id() | Msdata.SystOwners.t()) ::
 :ok | {:error, MscmpSystError.t()}

Removes an Owner record from the system.
Note that only Owner records in an Owner State of functional type
owner_states_purge_eligible may be purged from the system.

 Parameters

	owner - either the record ID of an Owner record to delete or the
Msdata.SystOwners struct representing the Owner to
purge.

 Link to this function

 update_owner(owner, update_params)

 @spec update_owner(
 MscmpSystInstance.Types.owner_id() | Msdata.SystOwners.t(),
 MscmpSystInstance.Types.owner_params()
) :: {:ok, Msdata.SystOwners.t()} | {:error, MscmpSystError.t()}

Updates an Owner record.

 Parameters

	owner - This value must either by the record ID of an existing Owner
record or the Msdata.SystOwners struct representing an
existing owner.

	update_params - a map of Owner record attributes to be updated. For
update operations only those attributes to be updates must be provided.
	internal_name - a predetermined unique identifier for the Owner
record for use in programmatic contexts. This attribute must be unique in
the system and may not be nil.

	display_name - a unique, friendly name identifying the owner and for
use in user interfaces. This attribute must be unique in the system and
may not be nil.

	owner_state_id - the record ID value of the new Owner State of the
Owner record. Note that if this attribute is provided, but is set nil,
an error will result.

 Instances

 Link to this function

 create_instance(instance_params)

 @spec create_instance(MscmpSystInstance.Types.instance_params()) ::
 {:ok, Msdata.SystInstances.t()} | {:error, MscmpSystError.t()}

Creates a new Instance record.
Creating a new Instance record will also create new Instance Context records
based on the defaults defined in the Instance Type Context records associated
with the Instance Type and Application of the new Instance. This is
accomplished with database triggers.

 Parameters

	instance_params - A map of attributes to use in creating the new
Instance record in the system.
	internal_name - a pre-generated identifier for Instance record for use
in programmatic contexts. This value is required and must be unique in
the system.

	display_name - a friendly name which identifies the record for use in
user interfaces. This value is required and must be unique in the system.

	dbserver_name - the name of the database server where the Instance
Datastore exists. This value is required. Note that invalid values here
may not be detected until such time as the Instance Datastore use is
attempted.

	application_id - the record ID of the Application for which this
Instance is being created. This value is required unless the
application_name attribute has been provided instead.

	application_name - the internal name of the Application for which this
Instance is being created. This value is requires unless the
application_id attribute has been provided instead.

	instance_code - A value used in constructing the Instance Context
credentials. This value should be a randomly generated series of between
8 and 64 bytes.

	instance_type_id - the record ID of the Instance Type of the new
Instance record. This attribute is required unless the
instance_type_name attribute is provided instead.

	instance_type_name - the internal name of the Instance Type of the new
Instance record. This attribute is requires unless the instance_type_id
attribute is provided instead.

	instance_state_id - the record ID of the Instance State in which to
create the new Instance record. This value may be omitted and allowed to
default based on the configured default Instance State. Optionally the
Instance State may also be identified by the instance_state_name
attribute.

	instance_state_name - the internal name of the Instance State in which
to create the new Instance record. This value may be omitted and allowed
to default based on the configured default Instance State. Optionally the
Instance State may also be identified by the instance_state_id
attribute.

	owner_id - the record ID of the Owner of the Instance. This
attribute is required unless the owner_name attribute is provided.

	owner_name - th internal name of the Owner of the Instance. This
attribute is required unless the owner_id attribute is provided.

	owning_instance_id - if the Instance is associated with a parent
instance, such as a sandbox Instance being created for a parent production
Instance, the parent/child relationship may be expressed by assigning this
attribute to the record ID of the parent. This attribute is not required
and the parent Instance may be identified by the owning_instance_name
attribute instead.

	owning_instance_name - an alternate identification method for
identifying a parent Instance when creating a child Instance. This
attribute is optional and may used in lieu of using the
owning_instance_id attribute to establish the parent/child relationship
of the new Instance.

 Link to this function

 get_default_instance_state_ids()

 @spec get_default_instance_state_ids() :: Keyword.t()

Returns a Keyword List of the default values for each Instance State's
functional type.
Instance updating functions that change the Instance State value of the
Instance will default to the appropriate Instance State if a specific Instance
State value is not provided by the caller.

 Link to this function

 get_instance_by_name(instance_name)

 @spec get_instance_by_name(MscmpSystInstance.Types.instance_name()) ::
 {:ok, Msdata.SystInstances.t()} | {:error, MscmpSystError.t()}

Returns the SystInstances record identified by its internal name.

 Parameters

	instance_name - the internal name of the Instance record to return.

 Example

iex> {:ok, %Msdata.SystInstances{}} =
...> MssubMcp.get_instance_by_name("app1_owner1_instance_types_sml")

 Link to this function

 get_instance_datastore_options(instance, startup_options)

 @spec get_instance_datastore_options(
 MscmpSystInstance.Types.instance_id() | Msdata.SystInstances.t(),
 map()
) :: MscmpSystDb.Types.DatastoreOptions.t()

Retrieves the Datastore Options based on the Instance database record and the
provided Startup Options.

 Parameters

	instance - the instance parameter is either the record ID value of the
Instance record desired or the Msdata.SystInstances
struct for the target Instance.

	startup_options - a map of values containing the Startup Options
obtained from the MscmpSystOptions component.

 Link to this function

 get_instance_id_by_name(instance_name)

 @spec get_instance_id_by_name(MscmpSystInstance.Types.instance_name()) ::
 {:ok, MscmpSystInstance.Types.instance_id()} | {:error, MscmpSystError.t()}

Returns the ID of the Instance record as identified by its internal name.

 Parameters

	instance_name - the internal name of the Instance record to reference.

 Example

iex> {:ok, instance_id} =
...> MssubMcp.get_instance_id_by_name("app1_owner1_instance_types_sml")
iex> is_binary(instance_id)
true

 Link to this function

 get_instance_state_by_name(instance_state_name)

 @spec get_instance_state_by_name(MscmpSystInstance.Types.instance_state_name()) ::
 Msdata.SystEnumItems.t() | nil

Retrieves the Instance State Enumeration record identified by the provided
Internal Name.
If the requested Internal Name does not match an existing Instance State
Enumeration record nil is returned.

 Parameters

	instance_state_name - the internal name of the Instance State to retrieve.

 Examples

Retrieving an Instance State Enumeration record.
iex> %Msdata.SystEnumItems{internal_name: "instance_states_sysdef_active"} =
...> MssubMcp.get_instance_state_by_name("instance_states_sysdef_active")
Trying to retrieve a non-existent Instance State.
iex> MssubMcp.get_instance_state_by_name("nonexistent_state")
nil

 Link to this function

 get_instance_state_default(functional_type \\ nil)

 @spec get_instance_state_default(
 MscmpSystInstance.Types.instance_state_functional_types()
 | nil
) ::
 Msdata.SystEnumItems.t()

Returns the Instance State Enumeration record which is configured as being
default.
If no Instance State record is configured as default, then nil is returned.

 Parameters

	functional_type - an optional parameter which, if provided and not
nil, will return the default Instance State record configured for the
requested functional type rather than the system default Instance State.
The default for this parameter is to treat the parameter as not provided
(nil).

 Examples

Requesting the system default Instance State.
iex> %Msdata.SystEnumItems{internal_name: "instance_states_sysdef_uninitialized"} =
...> MssubMcp.get_instance_state_default()
Requesting the default Instance State for a specific functional type.
iex> %Msdata.SystEnumItems{internal_name: "instance_states_sysdef_active"} =
...> MssubMcp.get_instance_state_default(:instance_states_active)

 Link to this function

 initialize_instance(instance_id, startup_options, opts \\ [])

 @spec initialize_instance(MscmpSystInstance.Types.instance_id(), map(), Keyword.t()) ::
 {:ok, Msdata.SystInstances.t()} | {:error, MscmpSystError.t()}

Initializes an uninitialized Instance.
When a new Instance is created in the database, the record is giving an
Instance State with a functional type of instance_states_uninitialized
meaning that the Instance record has been created in the database, but the
Instance's own database and associated database roles have not yet been set
up.
Initializing an Instance creates its database and its database roles
("Datastore" and "Datastore Contexts"). Once initialized, the Instance record
is given an Instance State of functional type instance_states_initialized.
Initialized Instances may be started and have their Datastores migrated to the
current version of the Instance's database.

 Parameters

	instance_id - the record ID of the Instance to initialize.

	startup_options - a map of values containing the Startup Options
obtained from the MscmpSystOptions component.

	opts - a Keyword List of optional values used during the initialization
process. The available options include:
	initializing_state_id - the record ID value of the Instance State to
use to indicate that the record is being initialized. If this value is
not provided the configured default Instance State for the functional type
instance_states_initializing will be used.

	initialized_state_id - the record ID value of the Instance State to
use to indicate that the record has successfully been initialized. If
this value is not provided the configured default Instance State for the
functional type instance_states_initialized will be used.

	failed_state_id - the record ID value of the Instance State to
use to indicate that the record has failed to be initialized. If this
value is not provided the default configured Instance State for the
functional type instance_states_failure will be used.

	db_shutdown_timeout - a timeout value used to limit the time allowed
for a clean shutdown of the DBA and Privileged database connections used
for initialization of the Datastore. See the documentation for
MscmpSystDb.create_datastore/2 for more information.

 Link to this function

 purge_instance(instance, startup_options)

 @spec purge_instance(
 MscmpSystInstance.Types.instance_id() | Msdata.SystInstances.t(),
 map()
) ::
 :ok | {:error, MscmpSystError.t()}

Purges an eligible Instance from the system.
Purging an Instance drops its associated Datastore and its defining
Msdata.SystInstances records from the database.
In order for the purge to be successful, the Instance must be in an Instance
State of functional type instance_states_purge_eligible.
Warning
Naturally, great care must be taken in the lead up to calling this function
as purging an Instance leads to the irreversible loss of the Instance's data
(absent externally managed backups of some sort).

 Parameters

	instance - either the record ID or the
Msdata.SystInstances struct of the Instance to purge.

	startup_options - a map of values containing the Startup Options
obtained from the MscmpSystOptions component.

 Link to this function

 set_instance_state(instance, instance_state_id)

 @spec set_instance_state(
 Msdata.SystInstances.t(),
 MscmpSystInstance.Types.instance_state_id()
) ::
 {:ok, Msdata.SystInstances.t()} | {:error, MscmpSystError.t()}

Sets the Instance State of an Instance.

 Parameters

	instance - the current Msdata.SystInstances struct
representing the Instance to be updated.

	instance_state_id - The record ID of the new Instance State value into
which to place the Instance record.

 Authentication Enums

 Link to this function

 get_credential_type_by_name(credential_type_name)

 @spec get_credential_type_by_name(MscmpSystAuthn.Types.credential_type_name()) ::
 Msdata.SystEnumItems.t() | nil

Returns the Credential Type record for the given Internal Name; raises on error.
On successful execution either the requested Credential Type Enumeration record
is returned or nil if the record does not exist.

 Parameters

	credential_type_name - the Internal Name of the desire Credential Type
record to return.

 Examples

Finding a Credential Type record by Internal Name.
iex> %Msdata.SystEnumItems{} =
...> MssubMcp.get_credential_type_by_name("credential_types_sysdef_token_api")
Looking for a non-existent record.
iex> MssubMcp.get_credential_type_by_name("nonexistent_type")
nil

 Link to this function

 get_credential_type_default(functional_type \\ nil)

 @spec get_credential_type_default(
 MscmpSystAuthn.Types.credential_type_functional_types()
 | nil
) ::
 Msdata.SystEnumItems.t()

Returns the Credential Type Enumeration record which is configured as being
default.
If no Credential Type record is configured as default, then nil is returned.

 Parameters

	functional_type - an optional parameter which, if provided and not
nil, will return the default Credential Type record configured for the
requested functional type rather than the system default Credential Type.
The default for this parameter is to treat the parameter as not provided
(nil).

 Examples

Requesting the system default Credential Type.
iex> %Msdata.SystEnumItems{internal_name: "credential_types_sysdef_password"} =
...> MssubMcp.get_credential_type_default()
Requesting the default Credential Type for a specific functional type.
iex> %Msdata.SystEnumItems{internal_name: "credential_types_sysdef_mfa_totp"} =
...> MssubMcp.get_credential_type_default(:credential_types_mfa_totp)

 Link to this function

 get_identity_type_by_name(identity_type_name)

 @spec get_identity_type_by_name(MscmpSystAuthn.Types.identity_type_name()) ::
 Msdata.SystEnumItems.t() | nil

Returns the Identity Type record for the given Internal Name; raises on error.
On successful execution either the requested Identity Type Enumeration record
is returned or nil if the record does not exist.

 Parameters

	identity_type_name - the Internal Name of the desire Identity Type
record to return.

 Examples

Finding a Identity Type record by Internal Name.
iex> %Msdata.SystEnumItems{} =
...> MssubMcp.get_identity_type_by_name("identity_types_sysdef_account")
Looking for a non-existent record.
iex> MssubMcp.get_identity_type_by_name("nonexistent_type")
nil

 Link to this function

 get_identity_type_default(functional_type \\ nil)

 @spec get_identity_type_default(
 MscmpSystAuthn.Types.identity_type_functional_types()
 | nil
) ::
 Msdata.SystEnumItems.t()

Returns the Identity Type Enumeration record which is configured as being
default.
If no Identity Type record is configured as default, then nil is returned.

 Parameters

	functional_type - an optional parameter which, if provided and not
nil, will return the default Identity Type record configured for the
requested functional type rather than the system default Identity Type.
The default for this parameter is to treat the parameter as not provided
(nil).

 Examples

Requesting the system default Identity Type.
iex> %Msdata.SystEnumItems{internal_name: "identity_types_sysdef_email"} =
...> MssubMcp.get_identity_type_default()
Requesting the default Identity Type for a specific functional type.
iex> %Msdata.SystEnumItems{internal_name: "identity_types_sysdef_api"} =
...> MssubMcp.get_identity_type_default(:identity_types_api)

 Access Accounts

 Link to this function

 access_account_exists?(opts \\ [])

 @spec access_account_exists?(Keyword.t()) :: boolean() | {:error, MscmpSystError.t()}

Tests to see if a specific Access Account, or any Access Account, record
exists in the database.
The functions provides an optional test on either an Access Account record's
Internal Name or record ID value. If no selectivity option is made, the test
checks if any Access Account records exist in the database at all.
If an appropriate Access Account record is found, the function returns true,
otherwise false. Any other condition is considered an error and will
result in an error tuple being returned indicating the cause of the error.

 Parameters

	opts - an optional Keyword List of optional parameters which can
influence the result of calling the function. The available options are:
	access_account_id - tests if a specific Access Account record exists
as referenced by its record ID value.

	access_account_name - tests if a specific Access Account record exists
as referenced by its Internal Name.

 Examples

Check if any Access Account record exists.
iex> MssubMcp.access_account_exists?()
true
Check if a specific Access Account record exists.
iex> MssubMcp.access_account_exists?(access_account_name: "example_accnt")
true
If a non-existent Access Account is requested, the function indicates the record was
not found.
iex> MssubMcp.access_account_exists?(access_account_name: "nonexistent_access_account")
false

 Link to this function

 create_access_account(access_account_params)

 @spec create_access_account(MscmpSystAuthn.Types.access_account_params()) ::
 {:ok, Msdata.SystAccessAccounts.t()} | {:error, MscmpSystError.t()}

Create a new Access Account.

 Parameters

	access_account_params - a map of required and optional parameters which
define the new Access Account record. Required attributes in this map are:
internal_name, external_name, access_account_state_id, and
allow_global_logins.

 Example

iex> state = MssubMcp.get_access_account_state_default()
iex> {:ok, %Msdata.SystAccessAccounts{}} =
...> MssubMcp.create_access_account(
...> %{
...> internal_name: "example_create_accnt",
...> external_name: "Create Access Account Example",
...> access_account_state_id: state.id,
...> allow_global_logins: true
...> }
...>)

 Link to this function

 get_access_account_by_name(access_account_name)

 @spec get_access_account_by_name(MscmpSystAuthn.Types.access_account_name()) ::
 Msdata.SystAccessAccounts.t() | {:error, MscmpSystError.t()}

Retrieves a fully populated Access Account record as found by internal name.
'Fully populated' in this context means that the related Account Account State
and related functional type data is also retrieved along with the actual
Access Account data.

 Parameters

	access_account_name - the internal name of the Access Account record to
retrieve.

 Example

iex> {
...> :ok,
...> %Msdata.SystAccessAccounts{internal_name: "example_accnt"}
...> } =
...> MssubMcp.get_access_account_by_name("example_accnt")

 Link to this function

 get_access_account_id_by_name(access_account_name)

 @spec get_access_account_id_by_name(MscmpSystAuthn.Types.access_account_name()) ::
 {:ok, MscmpSystAuthn.Types.access_account_id()} | {:error, MscmpSystError.t()}

Looks up an Access Account record ID by its internal name.

 Parameters

	access_account_name - the internal name of the record for which to
retrieve the record ID.

 Examples

iex> {:ok, access_account_id} =
...> MssubMcp.get_access_account_id_by_name("example_accnt")
iex> is_binary(access_account_id)
true

 Link to this function

 get_access_account_state_by_name(access_account_state_name)

 @spec get_access_account_state_by_name(
 MscmpSystAuthn.Types.access_account_state_name()
) ::
 Msdata.SystEnumItems.t() | nil

Returns the Access Account State record for the given Internal Name; raises on
error.
On successful execution either the requested Access Account State Enumeration
record is returned or nil if the record does not exist.

 Parameters

	access_account_state_name - the Internal Name of the desire Access Account
State record to return.

 Examples

Finding a Access Account State record by Internal Name.
iex> %Msdata.SystEnumItems{} =
...> MssubMcp.get_access_account_state_by_name("access_account_states_sysdef_active")
Looking for a non-existent record.
iex> MssubMcp.get_access_account_state_by_name("nonexistent_type")
nil

 Link to this function

 get_access_account_state_default(functional_type \\ nil)

 @spec get_access_account_state_default(
 MscmpSystAuthn.Types.access_account_state_functional_types()
 | nil
) :: Msdata.SystEnumItems.t()

Returns the Access Account State Enumeration record which is configured as
being default.
If no Access Account State record is configured as default, then nil is
returned.

 Parameters

	functional_type - an optional parameter which, if provided and not
nil, will return the default Access Account State record configured for
the requested functional type rather than the system default Access Account
State. The default for this parameter is to treat the parameter as not
provided (nil).

 Examples

Requesting the system default Access Account State.
iex> %Msdata.SystEnumItems{internal_name: "access_account_states_sysdef_pending"} =
...> MssubMcp.get_access_account_state_default()
Requesting the default Access Account State for a specific functional type.
iex> %Msdata.SystEnumItems{internal_name: "access_account_states_sysdef_inactive"} =
...> MssubMcp.get_access_account_state_default(:access_account_states_inactive)

 Link to this function

 purge_access_account(access_account)

 @spec purge_access_account(
 MscmpSystAuthn.Types.access_account_id()
 | Msdata.SystAccessAccounts.t()
) ::
 :ok | {:error, MscmpSystError.t()}

Purges the requested Access Account if the Access Account State is of
a purge eligible functional type.

 Parameters

	access_account - is either the record ID of the Access Account to purge
or the populated Msdata.SystAccessAccounts struct
representing the record to purge.

 Example

iex> {:ok, target_access_account} =
...> MssubMcp.get_access_account_by_name("example_purge_accnt")
iex> MssubMcp.purge_access_account(target_access_account)
:ok

 Link to this function

 update_access_account(access_account, access_account_params)

 @spec update_access_account(
 MscmpSystAuthn.Types.access_account_id() | Msdata.SystAccessAccounts.t(),
 MscmpSystAuthn.Types.access_account_params()
) :: {:ok, Msdata.SystAccessAccounts.t()} | {:error, MscmpSystError.t()}

Updates the maintainable fields of a given Access Account record.

 Parameters

	access_account - either the record ID value of the Access Account to
update or is the complete Msdata.SystAccessAccounts
struct representing the before-update state of the Access Account record.

	access_account_params - a map containing those attributes to be changed
along with their new values.

 Example

iex> {:ok, target_access_account} =
...> MssubMcp.get_access_account_by_name("example_accnt")
iex> {:ok, updated_access_account} =
...> MssubMcp.update_access_account(
...> target_access_account,
...> %{external_name: "Updated Example Account Name"}
...>)
iex> %Msdata.SystAccessAccounts{
...> external_name: "Updated Example Account Name"
...> } = updated_access_account

 Access Account/Instance Assocs.

 Link to this function

 accept_instance_invite(access_account_instance_assoc)

 @spec accept_instance_invite(
 MscmpSystAuthn.Types.access_account_instance_assoc_id()
 | Msdata.SystAccessAccountInstanceAssocs.t()
) ::
 {:ok, Msdata.SystAccessAccountInstanceAssocs.t()}
 | {:error, MscmpSystError.t()}

Accepts the invitation made to an Access Account to access an Instance.
This process is only needed in the case where a
syst_access_account_instance_assocs invitation may be accepted or declined
by the Access Account holder. To be accepted in this process the invitation
record must have been previously created (see invite_to_instance/3), must
not be expired, previously declined, or previously accepted; trying to accept
a record in such a state will result in an error tuple being returned.
Naturally, the Access Account holder may choose to never accept or decline the
invitation and may simply allow the invitation to expire.

 Parameters

	access_account_instance_assoc - this value may be either the populated
Msdata.SystAccessAccountInstanceAssocs struct to
accept or the record ID of the record to accept.

 Link to this function

 accept_instance_invite(access_account_id, instance_id)

 @spec accept_instance_invite(
 MscmpSystAuthn.Types.access_account_id(),
 MscmpSystInstance.Types.instance_id()
) ::
 {:ok, Msdata.SystAccessAccountInstanceAssocs.t()}
 | {:error, MscmpSystError.t()}

Accepts the invitation made to an Access Account to access an Instance,
referencing the record by its composite key values.
This function performs the same process as accept_instance_invite/1, but
will look up the record to accept using the Access Account, Instance, and
Credential Type record ID values.

 Parameters

	access_account_id - the record ID of the Access Account accepting the
invitation to the Instance.

	instance_id - the Instance record ID to which the Access Account has
been invited.

 Link to this function

 decline_instance_invite(access_account_instance_assoc)

 @spec decline_instance_invite(
 MscmpSystAuthn.Types.access_account_instance_assoc_id()
 | Msdata.SystAccessAccountInstanceAssocs.t()
) ::
 {:ok, Msdata.SystAccessAccountInstanceAssocs.t()}
 | {:error, MscmpSystError.t()}

Declines an unaccepted/unexpired invitation made to an Access Account to
access an Instance.
This process is only needed in the case where a
syst_access_account_instance_assocs invitation may be accepted or declined
by the Access Account holder. To be declined in this process the invitation
record must have been previously created (see invite_to_instance/3), must
not be expired, previously declined, or previously accepted; trying to decline
a record in such a state will result in an error tuple being returned.
Naturally, the Access Account holder may choose to never accept or decline the
invitation and may simply allow the invitation to expire.

 Parameters

	access_account_instance_assoc - this value may be either the populated
Msdata.SystAccessAccountInstanceAssocs struct to
decline or the record ID of the record to decline.

 Link to this function

 decline_instance_invite(access_account_id, instance_id)

 @spec decline_instance_invite(
 MscmpSystAuthn.Types.access_account_id(),
 MscmpSystInstance.Types.instance_id()
) ::
 {:ok, Msdata.SystAccessAccountInstanceAssocs.t()}
 | {:error, MscmpSystError.t()}

Declines an unaccepted/unexpired invitation made to an Access Account to
access an Instance, referencing the record by its composite key values.
This function performs the same process as decline_instance_invite/1, but
will look up the record to decline using the Access Account, Instance, and
Credential Type record ID values.

 Parameters

	access_account_id - the record ID of the Access Account declining the
invitation to the Instance.

	instance_id - the Instance record ID to which the Access Account has
been invited.

 Link to this function

 invite_to_instance(access_account_id, instance_id, opts \\ [])

 @spec invite_to_instance(
 MscmpSystAuthn.Types.access_account_id(),
 MscmpSystInstance.Types.instance_id(),
 Keyword.t()
) ::
 {:ok, Msdata.SystAccessAccountInstanceAssocs.t()}
 | {:error, MscmpSystError.t()}

Invites or re-invites an Access Account to establish access rights to a
specific Instance.
The invitation process creates a syst_access_account_instance_assocs record
for the requested Access Account and Instance and sets the invitation_issued
field to the current date/time. Re-invitation will update an existing
syst_access_account_instance_assocs record resetting invite data such as the
invitation expiration date or resetting the declined state if the record was
previously declined by the Access Account holder. Once a
syst_access_account_instance_assocs record is accepted, it may not be re-
invited again using this process until the record is revoked (deleted).
syst_access_account_instance_assocs are unique to the Access Account and
Instance combination and only one such record may exist for that combination
at any one time.

 Parameters

	access_account_id - the record ID of the Access Account to invite to the
Instance.

	instance_id - the Instance record ID to which the Access Account is
being invited.

	opts - a keyword list of optional parameters used to set record values
and behaviors. Available options are:
	create_accepted - will create a syst_access_account_instance_assocs
record which is already accepted when set true. The default value is
false.

	expiration_days - for records that are not created as accepted and act
as true invitations, this option sets the number of days in which an
Access Account holder may accept the invitation. After this time the
invitation is considered expired and must be re-invited before it can be
used to grant access again. The default value for this option is 30 days.

 Link to this function

 revoke_instance_access(access_account_instance_assoc)

 @spec revoke_instance_access(
 MscmpSystAuthn.Types.access_account_instance_assoc_id()
 | Msdata.SystAccessAccountInstanceAssocs.t()
) :: :ok | {:error, MscmpSystError.t()}

Revokes the access or invitation to access an Instance from the given Access
Account.
Simply put, Access Accounts are both invited and granted access to Instances
via Access Account Instance Association records (see:
Msdata.SystAccessAccountInstanceAssocs) and this
function deletes those records. This has the effect of revoking the
invitation to access an Instance from the Access Account/Credential Type
combination.
Records in any state of invited, accepted, or declined may be revoked/deleted
using this function.

 Parameters

	access_account_instance_assoc - this value may be either the populated
Msdata.SystAccessAccountInstanceAssocs struct to
revoke or the record ID of the record to revoke.

 Link to this function

 revoke_instance_access(access_account_id, instance_id)

 @spec revoke_instance_access(
 MscmpSystAuthn.Types.access_account_id(),
 MscmpSystInstance.Types.instance_id()
) ::
 {:ok, Msdata.SystAccessAccountInstanceAssocs.t()}
 | {:error, MscmpSystError.t()}

Revokes the access or invitation to access an Instance from the given Access
Account/Credential Type combination, referencing the record by its composite
key values.
This function performs the same action as revoke_instance_access/1 but
identified the record being revoked (deleted) using its composite/candidate
key values.

 Parameters

	access_account_id - the record ID of the Access Account from which the
invitation to access is being revoked.

	instance_id - the Instance record ID from which the Access Account had
previously been invited to access.

 Password Rules

 Link to this function

 create_disallowed_password(password)

 @spec create_disallowed_password(MscmpSystAuthn.Types.credential()) ::
 :ok | {:error, MscmpSystError.t()}

Adds a new password to the Disallowed Passwords list.
Disallowed passwords are passwords that are commonly known, are known to have
been revealed in a successful hacking attack, or are otherwise not available
for users to choose for their authentication credential. Enforcing that these
passwords are not available for use depends upon the effective
disallow_compromised Password Rule for the Access Account attempting
authentication.
An attempt to add a password which is already on the list will succeed as
though the password were not already part of the list.

 Parameters

	password - The plaintext password to add to the list of disallowed
passwords.

 Examples

Adding a password successfully will simply return :ok.
iex> MssubMcp.create_disallowed_password("Example Disallowed Password")
:ok
Any subsequent attempt to add the same password to the list again will appear
to succeed while silently doing nothing.
iex> MssubMcp.create_disallowed_password("Example Disallowed Password")
:ok

 Link to this function

 create_owner_password_rules(owner_id, insert_params)

 @spec create_owner_password_rules(
 MscmpSystInstance.Types.owner_id(),
 MscmpSystAuthn.Types.password_rule_params()
) ::
 {:ok, Msdata.SystOwnerPasswordRules.t()}
 | {:error, MscmpSystError.t() | Exception.t()}

Creates Owner Password Rules for the requested Owner.
Owners may optionally define their own Password Rules for their users so long
as their desired rules are of equal or greater stringency than the Global
Password Rules. If the new Owner Password Rules are defined to be less
stringent than the current Global Password Rules, the Owner Password Rules
will be saved as requested, but ignored when applied in favor of the more
stringent rule.

 Parameters

	owner_id - the record ID of the Owner for whom the Password Rules are
being created.

	insert_params - a map of the values to use when creating the new record.
See MscmpSystAuthn.Types.password_rule_params/0 for details
regarding the available attributes.

 Link to this function

 delete_disallowed_password(password)

 @spec delete_disallowed_password(MscmpSystAuthn.Types.credential()) ::
 {:ok, :deleted | :not_found} | {:error, MscmpSystError.t()}

Removes a password from the disallowed passwords list.
On success, this function will return a success tuple indicating if the
requested password was deleted from the disallowed passwords list
({:ok, :deleted}) or if the password simply wasn't found in the list
({:ok, :not_found}).

 Parameters

	password - the plaintext password to delete from the disallowed
passwords list.

 Examples

 Result when deleting a record from the list.
iex> MssubMcp.delete_disallowed_password("No Longer Disallowed")
{:ok, :deleted}
 Result when trying to delete a record not already on the list.
iex> MssubMcp.delete_disallowed_password("Not on List")
{:ok, :not_found}

 Link to this function

 delete_owner_password_rules(owner_id)

 @spec delete_owner_password_rules(MscmpSystInstance.Types.owner_id()) ::
 {:ok, :deleted | :not_found} | {:error, MscmpSystError.t() | Exception.t()}

Deletes an Owner Password Rules record from the system.

 Parameters

	owner_id - the Owner record ID whose Password Rules are to be deleted.

 Link to this function

 disallowed_passwords_populated?()

 @spec disallowed_passwords_populated?() :: boolean()

Tests if the Disallowed Password List has any entries or not.
Returns a simple boolean value. If true, there are existing entries in the
Disallowed Passwords Lists; otherwise false is returned.

 Examples

iex> MssubMcp.disallowed_passwords_populated?()
true

 Link to this function

 get_access_account_password_rule(access_account_id)

 @spec get_access_account_password_rule(MscmpSystAuthn.Types.access_account_id()) ::
 {:ok, MscmpSystAuthn.Types.PasswordRules.t()}
 | {:error, MscmpSystError.t() | Exception.t()}

Retrieves the Password Rules to apply for a requested Access Account as
identified by its record ID.
When evaluating the validity of candidate passwords for a user the system
retrieves the Global Password Rules and then the Access Account Owner Password
Rules, if such Rules have been defined. The system will compare each of the
Rules in the Global and Owner Password Rules with each other and select the
rule which demands the greatest stringency. This process results in a
composite Password Rule which can then be applied to test any candidate
password for validity. This calculated composite Password Rule is what is
returned by this function.
The return value is wrapped in a result tuple, {:ok, <rule>} on success and
{:error, <exception>} in cases of failure.

 Parameters

	access_account_id - the Access Account record ID of the user.

 Link to this function

 get_access_account_password_rule!(access_account_id)

 @spec get_access_account_password_rule!(MscmpSystAuthn.Types.access_account_id()) ::
 MscmpSystAuthn.Types.PasswordRules.t()

Retrieves the Password Rules to apply for a requested Access Account as
identified by its record ID, raising on error.
This function works the same as get_access_account_password_rule/1 except
that any errors cause an exception to be raised.

 Parameters

	access_account_id - the Access Account record ID of the user.

 Link to this function

 get_generic_password_rules(pwd_rules_struct, access_account_id \\ nil)

 @spec get_generic_password_rules(
 Msdata.SystGlobalPasswordRules.t() | Msdata.SystOwnerPasswordRules.t(),
 MscmpSystAuthn.Types.access_account_id() | nil
) :: MscmpSystAuthn.Types.PasswordRules.t() | nil

Converts a Global or Owner Password Rule struct into the generic map based
Password Rule required by some functions.
Msdata.SystGlobalPasswordRules and Msdata.SystOwnerPasswordRules both
define a standard set of known password rules, but do so as different data
types. While this works well for database record management features, testing
and validating actual password rules do not benefit from the distinction.
In these evaluation scenarios it's better to treat the password rule without
consideration of its source. This function returns the generic representation
that certain evaluation features such as test_credential/2 are expecting.

 Link to this function

 get_global_password_rules()

 @spec get_global_password_rules() ::
 {:ok, Msdata.SystGlobalPasswordRules.t()} | {:error, MscmpSystError.t()}

Retrieves the currently active Global Password Rules.
On successful retrieval a success tuple in the form of {:ok, <record>} is
returned where record is a Msdata.SystGlobalPasswordRules
struct. Any exceptions are returned via an error tuple.

 Link to this function

 get_global_password_rules!()

 @spec get_global_password_rules!() :: Msdata.SystGlobalPasswordRules.t()

Retrieves the currently active Global Password Rules, raising on error.
This function works the same as get_global_password_rules/0 except that
any errors cause an exception to be raised.

 Link to this function

 get_owner_password_rules(owner_id)

 @spec get_owner_password_rules(MscmpSystInstance.Types.owner_id()) ::
 {:ok, Msdata.SystOwnerPasswordRules.t()}
 | {:ok, :not_found}
 | {:error, MscmpSystError.t() | Exception.t()}

Retrieves the currently active Owner Password Rules for the requested Owner.
On successful retrieval a success tuple in the form of {:ok, <record>} is
returned where <record> is a populated
Msdata.SystownerPasswordRules struct if Password Rules
for the requested Owner was found or nil otherwise. Any exceptions are
returned via an error tuple.

 Parameters

	owner_id - the Owner record ID for whom to retrieve Password Rules.

 Link to this function

 get_owner_password_rules!(owner_id)

 @spec get_owner_password_rules!(MscmpSystInstance.Types.owner_id()) ::
 Msdata.SystOwnerPasswordRules.t() | :not_found

Retrieves the currently active Owner Password Rules for the requested Owner,
raising on error.
This function works the same as get_owner_password_rules/1 except that
any errors cause an exception to be raised.

 Parameters

	owner_id - the Owner record ID for whom to retrieve Password Rules.

 Link to this function

 load_disallowed_passwords(password_list, opts \\ [])

 @spec load_disallowed_passwords(Enumerable.t(), Keyword.t()) ::
 :ok | {:error, MscmpSystError.t()}

Bulk loads a list of passwords into the Disallowed Passwords database table.
Typically this function will be used to receive a stream of passwords which
should be added to the system Disallowed Passwords list. The passwords
passed to this function are streamed into the PostgreSQL database via a
COPY ms_syst.syst_disallowed_passwords FROM command.
The system Disallowed Password List is stored using SHA-1 hashes of the
disallowed passwords to prevent the casual disclosure of possibly sensitive
information including so called "Personally Identifiable Information" (PII).
If passwords to this function are provided via plain text this function will
convert them to the expected SHA-1 representation.

 Parameters

	password_list - A required Enumerable of passwords to disallow. The
passwords in this list are accepted in one of two possible formats: simple
plain text passwords or as sha1 hashes represented using PostgreSQL's bytea
textual export format (e.g. "example_pg_disallowed" =
"\x32dc749fd3ef7bcf79d125a3f9146c0f122f8763"). Which is expected depends
on the pg_format option described below.

Plain Text Processing Tip
If the password_list is using the plain text representation, some
sources, such as File.stream!/3 may add an extraneous newline (or
similar) to the password which must be stripped prior to passing to this
function. Failing to do so will result in incorrect hashing and the
requested passwords will not be effectively disallowed.

	options - An optional Keyword List of settings with which the caller can
influence the behavior of this function. The available options are:
	pg_format - a boolean value which indicates the format that the source
passwords are being provided in. If true, the passwords to disallow are
expected to be already be SHA-1 hashed and represented using PostgreSQL's
bytea textual representation; if false, the passwords are assumed to be
represented using simple plain text which will be transformed as needed by
this function. The default value of this parameter is false for plain
text processing.

	timeout - an integer representing the number of milliseconds that the
database transaction processing the load operation will wait prior to
timing out with an error. Bulk loading is assumed to be used in cases
where a substantial amount of data might be processed; certainly enough
data to possibly exceed the system default database transaction timeout.
As such it is recommend to be sure the timeout here is fit for the data
requirements expected for any given call. The default value is 300,000
milliseconds (5 minutes).

 Examples

Loading the Disallowed Passwords List using a file listing plain text
passwords.
iex> MssubMcp.password_disallowed?("example_plain_disallowed")
false
iex> Path.join(["database", "example_plain_disallowed_passwords.txt"])
...> |> File.stream!()
...> |> Stream.map(&String.trim_trailing(&1, "\n"))
...> |> MssubMcp.load_disallowed_passwords()
:ok
iex> MssubMcp.password_disallowed?("example_plain_disallowed")
true
Loading the Disallowed Passwords List using a file already formatted for
direct loading into PostgreSQL.
iex> MssubMcp.password_disallowed?("example_pg_disallowed")
false
iex> Path.join(["database", "example_pg_disallowed_passwords.txt"])
...> |> File.stream!()
...> |> MssubMcp.load_disallowed_passwords(pg_format: true)
:ok
iex> MssubMcp.password_disallowed?("example_pg_disallowed")
true

 Link to this function

 password_disallowed(password)

 @spec password_disallowed(MscmpSystAuthn.Types.credential()) ::
 {:ok, boolean()} | {:error, MscmpSystError.t()}

Indicates whether the requested password is disallowed.
This function returns a tuple in the form of {:ok, <disallowed>} where the
disallowed value is either true meaning that the requested password is
disallowed or false if the password is available for use.
Regardless of the return of this function, disallowed passwords are only
prevented for use if the effective disallow_compromised Password Rule for
the Access Account attempting authentication is set.

 Parameters

	password - the plaintext password to test for disallowed status.

 Examples

 When a password has been previously disallowed and cannot be used as a
 user credential.
iex> MssubMcp.password_disallowed("Is Disallowed")
{:ok, true}
 When a password has not been previously disallowed.
iex> MssubMcp.password_disallowed("Is Not Disallowed")
{:ok, false}

 Link to this function

 password_disallowed?(password)

 @spec password_disallowed?(MscmpSystAuthn.Types.credential()) :: boolean()

Indicates whether the requested password is disallowed, raising on error.
This function works the same as disallowed_password/1 except this function
returns a simple boolean value rather than a result tuple. If an error is
encountered an exception is raised.

 Parameters

	password - the plaintext password to test for disallowed status.

 Examples

 When a password has been previously disallowed and cannot be used as a
 user credential.
iex> MssubMcp.password_disallowed?("Is Disallowed")
true
 When a password has not been previously disallowed.
iex> MssubMcp.password_disallowed?("Is Not Disallowed")
false

 Link to this function

 test_credential(access_account_id, plaintext_pwd)

 @spec test_credential(
 MscmpSystAuthn.Types.access_account_id()
 | MscmpSystAuthn.Types.PasswordRules.t(),
 MscmpSystAuthn.Types.credential()
) ::
 {:ok, Keyword.t(MscmpSystAuthn.Types.password_rule_violations())}
 | {:error, MscmpSystError.t() | Exception.t()}

Tests a candidate password against the effective Password Rules for a given
Access Account.
Prior to attempting to save a Password Credential, it should be tested for
compliance with the Global Password Rules and any Owner Password Rules that
exist for the Owner of the Access Account. This function performs that test
and will return all of the violations detected. If no issues are detected,
a success tuple with a value of empty list will be returned ({:ok, []}).
Note that this function is recommended to run prior to attempting to save a
Password Credential, but is not required. Any function which can save a new
password to the database will independently test the candidate password
against the effective Password Rules prior to saving the Credential, erroring
on any invalid password.

 Parameters

	access_account_id - the record ID of the Access Account for whom to
perform the test. The applicable Password Rules may derive from the
Access Account Owner if the Access Account is in fact owned.

	plaintext_pwd - the candidate Password to test against the rules.

 Examples

 A successful password test.
iex> {:ok, access_account_id} =
...> MssubMcp.get_access_account_id_by_name("example_accnt")
iex> MssubMcp.test_credential(access_account_id, "A Passing Password.")
{:ok, []}
 An invalid password test.
iex> {:ok, access_account_id} =
...> MssubMcp.get_access_account_id_by_name("example_accnt")
iex> MssubMcp.test_credential(access_account_id, "short")
{:ok, [password_rule_length_min: 8]}

 Link to this function

 update_global_password_rules(update_params)

 @spec update_global_password_rules(MscmpSystAuthn.Types.password_rule_params()) ::
 {:ok, Msdata.SystGlobalPasswordRules.t()}
 | {:error, MscmpSystError.t() | Exception.t()}

Updates the Global Password Rules with new values.
The Global Password Rules are created at system installation time with a
default and recommended set of values, but these values may be customized as
desired any time after installation.
Note that the original Global Password Rules data will be retrieved for use in
the update process and that no Ecto optimistic locking will be employed with
this update.

 Parameters

	update_params - a map of the values to use when updating the Global
Password Rules record. See
MscmpSystAuthn.Types.password_rule_params/0 for details
regarding the available attributes.

 Link to this function

 update_global_password_rules(global_password_rules, update_params)

 @spec update_global_password_rules(
 Msdata.SystGlobalPasswordRules.t(),
 MscmpSystAuthn.Types.password_rule_params()
) ::
 {:ok, Msdata.SystGlobalPasswordRules.t()}
 | {:error, MscmpSystError.t() | Exception.t()}

Updates the Global Password Rules with new values using a caller provided
data source record.
This function works the same as described in create_update_global_password_rules/1
except that in this version the caller must also provide a source
data struct to act as the basis of the update. Ecto optimistic locking will
be applied to the update process.

 Parameters

	global_password_rules - a fully populated
Msdata.SystGlobalPasswordRules record representing
the state of the Global Password Rules prior to the change.

	update_params - a map of the values to use when updating the Global
Password Rules record. See
MscmpSystAuthn.Types.password_rule_params/0 for details
regarding the available attributes.

 Link to this function

 update_owner_password_rules(owner, update_params)

 @spec update_owner_password_rules(
 MscmpSystInstance.Types.owner_id() | Msdata.SystOwnerPasswordRules.t(),
 MscmpSystAuthn.Types.password_rule_params()
) ::
 {:ok, Msdata.SystOwnerPasswordRules.t()}
 | {:error, MscmpSystError.t() | Exception.t()}

Updates the Owner Password Rules with new values.
After creation, Owner Password Rules may be updated with new values as might
meet the specific needs of the Owner.

 Parameters

	owner - the record ID of the Owner for whom the Password Rules are
being updated or the fully populated data struct representing the current
Owner Password Rules. Note that if the data struct is provided Ecto
optimistic locking will be in effect.

	update_params - a map of the values to use when updating the Owner
Password Rules record. See
MscmpSystAuthn.Types.password_rule_params/0 for details
regarding the available attributes.

 Link to this function

 verify_password_rules(test_rules, standard_rules \\ nil)

 @spec verify_password_rules(
 MscmpSystAuthn.Types.PasswordRules.t(),
 Msdata.SystGlobalPasswordRules.t()
 | MscmpSystAuthn.Types.PasswordRules.t()
 | nil
) ::
 {:ok, Keyword.t(MscmpSystAuthn.Types.password_rule_violations())}
 | {:error, MscmpSystError.t() | Exception.t()}

Compares a "Test" set of Password Rules against a "Standard" set of Password
Rules and reports on which of the "Test" Rules are considered less stringent
than the "Standard" Rules.
The primary use case for this function is to test how Owner Password Rules
("Test" Rules) compare against the Global Password Rules ("Standard" Rules),
but the function can compare any two rules.
The return value of this function is wrapped in a result tuple. A result of
{:ok, <rule violations>} is returned on success and an error tuple in the
form of {:error, <exception>} is returned on error. The <rule violations>
value is a Keyword List where each tuple's key represents the rule violated
and the tuple's value is the required value for that rule; whether the
required value is a minimum or maximum depends on the nature of the specific
rule being reported.

 Parameters

	test_rules - a Password Rule which will be tested against the value
of the standard_rules. Where the test_rules are less stringent than the
standard_rules, a violation is reported in the result.

	standard_rules - the "Standard" against which the test_rules are
judged. This parameter is optional and when nil the Global Password
Rule is retrieved and used as the default "Standard" Rules. Otherwise
either a generic MscmpSystAuthn.Types.PasswordRules.t/0 value
or a populated Msdata.SystGlobalPasswordRules data
struct may be provided.

 Link to this function

 verify_password_rules!(test_rules, standard_rules \\ nil)

 @spec verify_password_rules!(
 MscmpSystAuthn.Types.PasswordRules.t(),
 Msdata.SystGlobalPasswordRules.t()
 | MscmpSystAuthn.Types.PasswordRules.t()
 | nil
) :: Keyword.t(MscmpSystAuthn.Types.password_rule_violations())

Compares a "Test" set of Password Rules against a "Standard" set of Password
Rules and reports on which of the "Test" Rules are considered less stringent
than the "Standard" Rules, raising on error.
This function works the same as verify_password_rules/2 except that any
errors cause an exception to be raised.

 Parameters

	test_rules - a Password Rule which will be tested against the value
of the standard_rules. Where the test_rules are less stringent than the
standard_rules, a violation is reported in the result.

	standard_rules - the "Standard" against which the test_rules are
judged. This parameter is optional and when nil the Global Password
Rule is retrieved and used as the default "Standard" Rules. Otherwise
either a generic MscmpSystAuthn.Types.PasswordRules.t/0 value
or a populated Msdata.SystGlobalPasswordRules data
struct may be provided.

 Network Rules

 Link to this function

 create_disallowed_host(host_address)

 @spec create_disallowed_host(MscmpSystAuthn.Types.host_address()) ::
 {:ok, Msdata.SystDisallowedHosts.t()} | {:error, MscmpSystError.t()}

Adds a host IP address to the global disallowed hosts list.
Disallowed hosts are IP addresses which are prevented from authenticating
users with the system, and by extension prevents host access to application
functions generally. Hosts are disallowed on a global basis and may be added
to the list based on system heuristics which detect suspicious activity.
Successfully adding a host to the list returns a success tuple and a struct
representing the record just created. Attempting to add a host which is
already part of the list will also result in a success tuple, but no record is
returned.

 Parameters

	host_address - the IP address of the host to disallow.

 Examples

 Adding a new host to the list.
iex> import MscmpSystNetwork, only: [sigil_i: 2]
iex> {:ok, false} = MssubMcp.host_disallowed(~i"10.123.123.20")
iex> {:ok, %Msdata.SystDisallowedHosts{}} =
...> MssubMcp.create_disallowed_host(~i"10.123.123.20")
 Attempting to add a host already on the list.
iex> import MscmpSystNetwork, only: [sigil_i: 2]
iex> {:ok, true} = MssubMcp.host_disallowed(~i"10.123.123.3")
iex> {:ok, nil} =
...> MssubMcp.create_disallowed_host(~i"10.123.123.3")

 Link to this function

 create_global_network_rule(insert_params)

 @spec create_global_network_rule(MscmpSystAuthn.Types.global_network_rule_params()) ::
 {:ok, Msdata.SystGlobalNetworkRules.t()} | {:error, MscmpSystError.t()}

Creates a new Global Network Rule using the provided parameters.
Global Network Rules are checked prior to all attempted user authentication
events and have precedence over Owner and Instance Network Rules, though they
are secondary to the Disallowed Hosts list.
On successful creation, a result tuple in the form {:ok, <new record>} is
returned where the <new record> is the fully populated Data struct of the
record just created. If an exception is raised this function will return a
failure tuple in the form of {:error, <exception data>}.

 Parameters

	insert_params - a map representing the values to use when creating the
new Global Network Rule. See
MscmpSystAuthn.Types.global_network_rule_params/0 for the
available attributes.

 Example

 Adding a new "Allow" Global Network Rule for a CIDR network.
iex> import MscmpSystNetwork, only: [sigil_i: 2]
iex> new_global_rule = %{
...> ordering: 20,
...> functional_type: :allow,
...> ip_host_or_network: ~i"10.100.150.0/24"
...> }
iex> {:ok, %Msdata.SystGlobalNetworkRules{}} =
...> MssubMcp.create_global_network_rule(new_global_rule)
 Adding a new "Deny" Global Network Rule for an IP Address range.
iex> import MscmpSystNetwork, only: [sigil_i: 2]
iex> new_global_rule = %{
...> ordering: 21,
...> functional_type: :deny,
...> ip_host_or_network: nil,
...> ip_host_range_lower: ~i"10.100.151.1",
...> ip_host_range_upper: ~i"10.100.152.254"
...> }
iex> {:ok, %Msdata.SystGlobalNetworkRules{}} =
...> MssubMcp.create_global_network_rule(new_global_rule)

 Link to this function

 create_instance_network_rule(instance_id, insert_params)

 @spec create_instance_network_rule(
 MscmpSystInstance.Types.instance_id(),
 MscmpSystAuthn.Types.instance_network_rule_params()
) :: {:ok, Msdata.SystInstanceNetworkRules.t()} | {:error, MscmpSystError.t()}

Creates a new Instance Network Rule using the provided parameters.
Instance Network Rules the checked after the Disallowed Hosts list, the Global
Network Rules, and the Instance Network Rules and apply to all Instances owned
by the specified Instance, unless a higher precedence rule already applies to the
host.
On successful creation, a result tuple in the form {:ok, <new record>} is
returned where the <new record> is the fully populated Data struct of the
record just created. If an exception is raised this function will return a
failure tuple in the form of {:error, <exception data>}.

 Parameters

	instance_id - the record ID of the Instance for whom the Instance Network Rule is
being created.

	insert_params - a map representing the values to use when creating the
new Instance Network Rule. See
MscmpSystAuthn.Types.instance_network_rule_params/0 for the
available attributes.

 Example

 Adding a new "Allow" Instance Network Rule for a CIDR network.
iex> import MscmpSystNetwork, only: [sigil_i: 2]
iex> {:ok, instance_id} =
...> MssubMcp.get_instance_id_by_name("app1_owner8_instance_types_std")
iex> new_instance_rule = %{
...> ordering: 1,
...> functional_type: :allow,
...> ip_host_or_network: ~i"10.100.170.0/24"
...> }
iex> {:ok, %Msdata.SystInstanceNetworkRules{}} =
...> MssubMcp.create_instance_network_rule(instance_id, new_instance_rule)
 Adding a new "Deny" Instance Network Rule for an IP Address range.
iex> import MscmpSystNetwork, only: [sigil_i: 2]
iex> {:ok, instance_id} =
...> MssubMcp.get_instance_id_by_name("app1_owner8_instance_types_std")
iex> new_instance_rule = %{
...> ordering: 2,
...> functional_type: :deny,
...> ip_host_or_network: nil,
...> ip_host_range_lower: ~i"10.100.171.1",
...> ip_host_range_upper: ~i"10.100.172.254"
...> }
iex> {:ok, %Msdata.SystInstanceNetworkRules{}} =
...> MssubMcp.create_instance_network_rule(instance_id, new_instance_rule)

 Link to this function

 create_owner_network_rule(owner_id, insert_params)

 @spec create_owner_network_rule(
 MscmpSystInstance.Types.owner_id(),
 MscmpSystAuthn.Types.owner_network_rule_params()
) :: {:ok, Msdata.SystOwnerNetworkRules.t()} | {:error, MscmpSystError.t()}

Creates a new Owner Network Rule using the provided parameters.
Owner Network Rules the checked after the Disallowed Hosts list, the Global
Network Rules, and the Instance Network Rules and apply to all Instances owned
by the specified Owner, unless a higher precedence rule already applies to the
host.
On successful creation, a result tuple in the form {:ok, <new record>} is
returned where the <new record> is the fully populated Data struct of the
record just created. If an exception is raised this function will return a
failure tuple in the form of {:error, <exception data>}.

 Parameters

	owner_id - the record ID of the Owner for whom the Owner Network Rule is
being created.

	insert_params - a map representing the values to use when creating the
new Owner Network Rule. See
MscmpSystAuthn.Types.owner_network_rule_params/0 for the
available attributes.

 Example

 Adding a new "Allow" Owner Network Rule for a CIDR network.
iex> import MscmpSystNetwork, only: [sigil_i: 2]
iex> {:ok, owner_id} = MssubMcp.get_owner_id_by_name("owner8")
iex> new_owner_rule = %{
...> ordering: 1,
...> functional_type: :allow,
...> ip_host_or_network: ~i"10.100.160.0/24"
...> }
iex> {:ok, %Msdata.SystOwnerNetworkRules{}} =
...> MssubMcp.create_owner_network_rule(owner_id, new_owner_rule)
 Adding a new "Deny" Owner Network Rule for an IP Address range.
iex> import MscmpSystNetwork, only: [sigil_i: 2]
iex> {:ok, owner_id} = MssubMcp.get_owner_id_by_name("owner8")
iex> new_owner_rule = %{
...> ordering: 2,
...> functional_type: :deny,
...> ip_host_or_network: nil,
...> ip_host_range_lower: ~i"10.100.161.1",
...> ip_host_range_upper: ~i"10.100.162.254"
...> }
iex> {:ok, %Msdata.SystOwnerNetworkRules{}} =
...> MssubMcp.create_owner_network_rule(owner_id, new_owner_rule)

 Link to this function

 delete_disallowed_host(disallowed_host)

 @spec delete_disallowed_host(
 MscmpSystAuthn.Types.disallowed_host_id()
 | Msdata.SystDisallowedHosts.t()
) ::
 {:ok, :deleted | :not_found} | {:error, MscmpSystError.t()}

Deletes a host IP address from the Disallowed Hosts list based on either a
Msdata.SystDisallowedHosts record or the ID of such a
record.
If the record is found and deleted a success tuple in the form {:ok, :deleted}
is returned. If the record is not found the success tuple {:ok, :not_found}
is returned.
Once a host is removed from the Disallowed Hosts list, users are allowed to
authenticate from the host, so long as no other effective Network Rule
prevents the action.

 Parameters

	disallowed_host - either the fully populated
Msdata.SystDisallowedHosts data struct for the
record to delete or the ID of the record. Note that when the data struct
is provided Ecto optimistic locking is applied to the the delete operation.

 Examples

 Deleting a host by record ID.
iex> import MscmpSystNetwork, only: [sigil_i: 2]
iex> {:ok, target_host_record} =
...> MssubMcp.get_disallowed_host_record_by_host(~i"10.10.250.4")
iex> MssubMcp.delete_disallowed_host(target_host_record.id)
{:ok, :deleted}
 Deleting a host by record struct.
iex> import MscmpSystNetwork, only: [sigil_i: 2]
iex> {:ok, target_host_record} =
...> MssubMcp.get_disallowed_host_record_by_host(~i"10.10.250.5")
iex> MssubMcp.delete_disallowed_host(target_host_record)
{:ok, :deleted}
 Deleting a struct for a no longer existent record.
iex> import MscmpSystNetwork, only: [sigil_i: 2]
iex> {:ok, target_host_record} =
...> MssubMcp.get_disallowed_host_record_by_host(~i"10.10.250.6")
iex> MssubMcp.delete_disallowed_host(target_host_record)
{:ok, :deleted}
iex> MssubMcp.delete_disallowed_host(target_host_record)
{:ok, :not_found}

 Link to this function

 delete_disallowed_host_addr(host_addr)

 @spec delete_disallowed_host_addr(MscmpSystAuthn.Types.host_address()) ::
 {:ok, :deleted | :not_found} | {:error, MscmpSystError.t()}

Deletes a host IP address from the Disallowed Hosts list as looked up by the
host IP address.
If the record is found and deleted a success tuple in the form {:ok, :deleted}
is returned. If the record is not found the success tuple {:ok, :not_found}
is returned. Any other condition would cause an error tuple to be returned.
Once a host is removed from the Disallowed Hosts list, users are allowed to
authenticate from the host, so long as no other effective Network Rule
prevents the action.

 Parameters

	host_addr - the IP address of the host that is no longer to be
disallowed.

 Examples

 Deleting a host that does exist in the list.
iex> import MscmpSystNetwork, only: [sigil_i: 2]
iex> {:ok, true} = MssubMcp.host_disallowed(~i"10.10.251.1")
iex> {:ok, :deleted} =
...> MssubMcp.delete_disallowed_host_addr(~i"10.10.251.1")
iex> {:ok, false} = MssubMcp.host_disallowed(~i"10.10.251.1")
 Attempting to delete a host not already on the list.
iex> import MscmpSystNetwork, only: [sigil_i: 2]
iex> {:ok, false} = MssubMcp.host_disallowed(~i"10.10.251.10")
iex> {:ok, :not_found} =
...> MssubMcp.delete_disallowed_host_addr(~i"10.10.251.10")

 Link to this function

 delete_global_network_rule(global_network_rule_id)

 @spec delete_global_network_rule(Ecto.UUID.t()) ::
 :ok | {:error, MscmpSystError.t() | Exception.t()}

Deletes an existing Global Network Rule record as referenced by the record ID.
On successful deletion, a simple result of :ok is returned. On error, an
error tuple in the form of {:error, <exception>} is returned.

 Parameters

	global_network_rule_id - The record ID of the Global Network Rule record
to delete.

 Link to this function

 delete_instance_network_rule(instance_network_rule_id)

 @spec delete_instance_network_rule(Ecto.UUID.t()) ::
 :ok | {:error, MscmpSystError.t() | Exception.t()}

Deletes an existing Instance Network Rule record as referenced by the record
ID.
On successful deletion, a simple result of :ok is returned. On error, an
error tuple in the form of {:error, <exception>} is returned.

 Parameters

	instance_network_rule_id - The record ID of the Instance Network Rule
record to delete.

 Link to this function

 delete_owner_network_rule(owner_network_rule_id)

 @spec delete_owner_network_rule(Ecto.UUID.t()) ::
 :ok | {:error, MscmpSystError.t() | Exception.t()}

Deletes an existing Owner Network Rule record as referenced by the record ID.
On successful deletion, a simple result of :ok is returned. On error, an
error tuple in the form of {:error, <exception>} is returned.

 Parameters

	owner_network_rule_id - The record ID of the Owner Network Rule record
to delete.

 Link to this function

 get_applied_network_rule(host_address, instance_id \\ nil, instance_owner_id \\ nil)

 @spec get_applied_network_rule(
 MscmpSystAuthn.Types.host_address(),
 MscmpSystInstance.Types.instance_id() | nil,
 MscmpSystInstance.Types.owner_id() | nil
) ::
 {:ok, MscmpSystAuthn.Types.AppliedNetworkRule.t()}
 | {:error, MscmpSystError.t() | Exception.t()}

Returns the Network Rule which should be applied for the given Host IP Address.
This function compares the provided Host IP Address against the applicable
Network Rules which apply to it and return the specific rule which should be
applied during the authentication process.

 Network Rule Precedence

The specific rules to check for applicability depends on the other provided
parameters. The available Network Rule sets in order of precedence are:
	Disallowed Hosts: Globally disallowed hosts are always checked first and
no later rule can override the denial. Only removing the host from the
Disallowed Hosts List can reverse this denial.

	Global Network Rules: These are rules applied to all presented Host IP
Addresses.

	Instance Network Rules: Rules defined by Instance Owners and are the
most granular rule level available. These Network Rules are only evaluated
if the instance_id parameter is provided.

	Owner Network Rules: Network Rules which are applicable to all
Instances of a given Owner, provided no superseding Instance Network Rule
was found. This rule set is included if either the instance_id or
owner_id parameter is provided.

	Default Network Rule: When no explicitly defined Network Rule has
been found for a host, this rule will apply implicitly. The current rule
grants access from any host.

 Return Value

 This function returns a result tuple. The value element of the result tuple
 is a map of type MscmpSystAuthn.Types.AppliedNetworkRule.t/0.
 The map indicates which precedence group the rule came from, the ID of the
 Network Rule record if the rule was derived from the various Network Rule
 data tables, and the Functional Type of the rule: :allow meaning the
 rule explicitly allows the host to attempt an authentication, or :deny
 indicating that the host is not allowed to attempt authentication.

 Parameters

	host_address - the Host IP Address which the user wishes to authenticate
from.

	instance_id - the record ID of an Instance to which the user wants to
gain access. This parameter is optional, though excluding this parameter
will leave the Instance Network Rules might properly apply unevaluated. If
this parameter is provided, the Owner of the Instance is implied and there
is no need to also supply the owner_id parameter.

	owner_id - the record ID of an Owner which owns the candidate Instances
to which the user wishes to authenticate. This parameter is not required if
the instance_id parameter has been provided. Otherwise, this parameter is
optional, though if the Owner has not been resolved through this parameter
or via the instance_id, the Owner Network Rules that might apply to the
authentication attempt will not be applied.

 Examples

 When the host is a member of the Disallowed Hosts lists.
iex> import MscmpSystNetwork, only: [sigil_i: 2]
iex> {:ok,
...> %MscmpSystAuthn.Types.AppliedNetworkRule{
...> functional_type: :deny, network_rule_id: id, precedence: :disallowed
...> }
...> } = MssubMcp.get_applied_network_rule(~i"10.123.123.3")
iex> is_binary(id)
true
 When the Host IP Address does not match any explicitly defined rule and the
 implicit rule applies.
iex> import MscmpSystNetwork, only: [sigil_i: 2]
iex> MssubMcp.get_applied_network_rule(~i"10.124.124.3")
{:ok,
 %MscmpSystAuthn.Types.AppliedNetworkRule{
 functional_type: :allow, network_rule_id: nil, precedence: :implied
 }
}
 When a Global Network Rule explicitly allows the Host IP Address to attempt
 authentication.
iex> import MscmpSystNetwork, only: [sigil_i: 2]
iex> {:ok,
...> %MscmpSystAuthn.Types.AppliedNetworkRule{
...> functional_type: :allow, network_rule_id: id, precedence: :global
...> }
...> } = MssubMcp.get_applied_network_rule(~i"10.125.125.3")
iex> is_binary(id)
true
 Note that while the examples did not include Instance or Owner IDs, the
 examples are none-the-less representative of cases where they are included.

 Link to this function

 get_applied_network_rule!(host_address, instance_id \\ nil, instance_owner_id \\ nil)

 @spec get_applied_network_rule!(
 MscmpSystAuthn.Types.host_address(),
 MscmpSystInstance.Types.instance_id() | nil,
 MscmpSystInstance.Types.owner_id() | nil
) :: MscmpSystAuthn.Types.AppliedNetworkRule.t()

Returns the Network Rule which should be applied for the given Host IP
Address, raising on error.
This function works the same as get_applied_network_rule/3 except this
function returns its result without wrapping it in a result tuple. If an
error is encountered an exception is raised.

 Parameters

	host_address - the Host IP Address which the user wishes to authenticate
from.

	instance_id - the record ID of an Instance to which the user wants to
gain access. This parameter is optional, though excluding this parameter
will leave the Instance Network Rules might properly apply unevaluated. If
this parameter is provided, the Owner of the Instance is implied and there
is no need to also supply the owner_id parameter.

	owner_id - the record ID of an Owner which owns the candidate Instances
to which the user wishes to authenticate. This parameter is not required if
the instance_id parameter has been provided. Otherwise, this parameter is
optional, though if the Owner has not been resolved through this parameter
or via the instance_id, the Owner Network Rules that might apply to the
authentication attempt will not be applied.

 Examples

 When the host is a member of the Disallowed Hosts lists.
iex> import MscmpSystNetwork, only: [sigil_i: 2]
iex> %MscmpSystAuthn.Types.AppliedNetworkRule{
...> functional_type: :deny, network_rule_id: id, precedence: :disallowed
...> } = MssubMcp.get_applied_network_rule!(~i"10.123.123.3")
iex> is_binary(id)
true
 When the Host IP Address does not match any explicitly defined rule and the
 implicit rule applies.
iex> import MscmpSystNetwork, only: [sigil_i: 2]
iex> MssubMcp.get_applied_network_rule!(~i"10.124.124.3")
%MscmpSystAuthn.Types.AppliedNetworkRule{
 functional_type: :allow, network_rule_id: nil, precedence: :implied
}
 When a Global Network Rule explicitly allows the Host IP Address to attempt
 authentication.
iex> import MscmpSystNetwork, only: [sigil_i: 2]
iex> %MscmpSystAuthn.Types.AppliedNetworkRule{
...> functional_type: :allow, network_rule_id: id, precedence: :global
...> } = MssubMcp.get_applied_network_rule!(~i"10.125.125.3")
iex> is_binary(id)
true
 Note that while the examples did not include Instance or Owner IDs, the
 examples are none-the-less representative of cases where they are included.

 Link to this function

 get_disallowed_host_record_by_host(host_addr)

 @spec get_disallowed_host_record_by_host(MscmpSystAuthn.Types.host_address()) ::
 {:ok, Msdata.SystDisallowedHosts.t() | nil} | {:error, MscmpSystError.t()}

Retrieves a Disallowed Host record from the database as identified by its host
address.

 Parameters

	host_address - the IP address of the disallowed host record to retrieve.

 Example

 Retrieving a Disallowed Host record by IP address.
iex> import MscmpSystNetwork, only: [sigil_i: 2]
iex> {:ok, %Msdata.SystDisallowedHosts{}} =
...> MssubMcp.get_disallowed_host_record_by_host(~i"10.123.123.4")
 Attempting to retrieve a record for a host not on the list.
iex> import MscmpSystNetwork, only: [sigil_i: 2]
iex> MssubMcp.get_disallowed_host_record_by_host(~i"10.125.120.20")
{:ok, nil}

 Link to this function

 get_disallowed_host_record_by_host!(host_addr)

 @spec get_disallowed_host_record_by_host!(MscmpSystAuthn.Types.host_address()) ::
 Msdata.SystDisallowedHosts.t() | nil

Retrieves a Disallowed Host record from the database as identified by its host
address, raising on error.
This function works the same as get_disallowed_host_record_by_host/1 except
this function returns its result without wrapping it in a result tuple. If an
error is encountered an exception is raised.

 Parameters

	host_address - the IP address of the disallowed host record to retrieve.

 Example

 Retrieving a Disallowed Host record by IP address.
iex> import MscmpSystNetwork, only: [sigil_i: 2]
iex> %Msdata.SystDisallowedHosts{} =
...> MssubMcp.get_disallowed_host_record_by_host!(~i"10.123.123.4")
 Attempting to retrieve a record for a host not on the list.
iex> import MscmpSystNetwork, only: [sigil_i: 2]
iex> MssubMcp.get_disallowed_host_record_by_host!(~i"10.125.120.20")
nil

 Link to this function

 get_disallowed_host_record_by_id(disallowed_host_id)

 @spec get_disallowed_host_record_by_id(MscmpSystAuthn.Types.disallowed_host_id()) ::
 {:ok, Msdata.SystDisallowedHosts.t()}
 | {:error, MscmpSystError.t() | Exception.t()}

Retrieves a Disallowed Host record by the record ID.
This function assumes the record exists. If the record does not exist an
error tuple will be returned.

 Parameters

	disallowed_host_id - the record ID of the Disallowed Host record to retrieve.

 Example

 Retrieving a Disallowed Host record by record ID.
 {:ok, %Msdata.SystDisallowedHosts{}} =
 MssubMcp.get_disallowed_host_record_by_id(
 "ad7f2030-5895-11ed-a888-0f8a20e745a9")

 Link to this function

 get_disallowed_host_record_by_id!(disallowed_host_id)

 @spec get_disallowed_host_record_by_id!(MscmpSystAuthn.Types.disallowed_host_id()) ::
 Msdata.SystDisallowedHosts.t()

Retrieves a Disallowed Host record by the record ID, raising on error.
This function works the same as get_disallowed_host_record_by_id/1 except
this function returns its result without wrapping it in a result tuple. If an
error is encountered, including if the record does not exist, an exception is
raised.

 Parameters

	disallowed_host_id - the record ID of the Disallowed Host record to retrieve.

 Example

 Retrieving a Disallowed Host record by record ID.
 %Msdata.SystDisallowedHosts{} =
 MssubMcp.get_disallowed_host_record_by_id!(
 "ad7f2030-5895-11ed-a888-0f8a20e745a9")

 Link to this function

 get_global_network_rule(global_network_rule_id)

 @spec get_global_network_rule(Ecto.UUID.t()) ::
 {:ok, Msdata.SystGlobalNetworkRules.t()}
 | {:ok, :not_found}
 | {:error, MscmpSystError.t() | Exception.t()}

Retrieves a Global Network Rule record based on its record ID.
For a given Global Network Rule record ID this function will return a result
tuple in the form of {:ok, <record>} where <record> is the fully
populated Msdata.SystGlobalNetworkRules. If the
record does not exist, then {:ok, :not_found} is returned. Otherwise, an
error tuple in the form of {:error, <exception>} is returned.

 Parameters

	global_network_rule_id - the record ID of the desired Global Network Rule
record.

 Link to this function

 get_global_network_rule!(global_network_rule_id)

 @spec get_global_network_rule!(Ecto.UUID.t()) ::
 Msdata.SystGlobalNetworkRules.t() | :not_found

Retrieves a Global Network Rule record based on its record ID, raising on
error.
This function works the same as get_global_network_rule/1 except this
function returns its result without wrapping it in a result tuple. If an
error is encountered, including if the record does not exist, an exception is
raised.

 Parameters

	global_network_rule_id - the record ID of the desired Global Network Rule
record.

 Link to this function

 get_instance_network_rule(instance_network_rule_id)

 @spec get_instance_network_rule(Ecto.UUID.t()) ::
 {:ok, Msdata.SystInstanceNetworkRules.t()}
 | {:ok, :not_found}
 | {:error, MscmpSystError.t() | Exception.t()}

Retrieves a Instance Network Rule record based on its record ID.
For a given Instance Network Rule record ID this function will return a result
tuple in the form of {:ok, <record>} where <record> is the fully
populated Msdata.SystInstanceNetworkRules. If the
record does not exist, then {:ok, :not_found} is returned. Otherwise, an
error tuple in the form of {:error, <exception>} is returned.

 Parameters

	instance_network_rule_id - the record ID of the desired Instance Network
Rule record.

 Link to this function

 get_instance_network_rule!(instance_network_rule_id)

 @spec get_instance_network_rule!(Ecto.UUID.t()) ::
 Msdata.SystInstanceNetworkRules.t() | :not_found

Retrieves a Instance Network Rule record based on its record ID, raising on
error.
This function works the same as get_instance_network_rule/1 except this
function returns its result without wrapping it in a result tuple. If an
error is encountered, including if the record does not exist, an exception is
raised.

 Parameters

	instance_network_rule_id - the record ID of the desired Instance Network
Rule record.

 Link to this function

 get_owner_network_rule(owner_network_rule_id)

 @spec get_owner_network_rule(Ecto.UUID.t()) ::
 {:ok, Msdata.SystOwnerNetworkRules.t()}
 | {:ok, :not_found}
 | {:error, MscmpSystError.t() | Exception.t()}

Retrieves a Owner Network Rule record based on its record ID.
For a given Owner Network Rule record ID this function will return a result
tuple in the form of {:ok, <record>} where <record> is the fully
populated Msdata.SystOwnerNetworkRules. If the
record does not exist, then {:ok, :not_found} is returned. Otherwise, an
error tuple in the form of {:error, <exception>} is returned.

 Parameters

	owner_network_rule_id - the record ID of the desired Owner Network Rule
record.

 Link to this function

 get_owner_network_rule!(owner_network_rule_id)

 @spec get_owner_network_rule!(Ecto.UUID.t()) ::
 Msdata.SystOwnerNetworkRules.t() | :not_found

Retrieves a Owner Network Rule record based on its record ID, raising on
error.
This function works the same as get_owner_network_rule/1 except this
function returns its result without wrapping it in a result tuple. If an
error is encountered, including if the record does not exist, an exception is
raised.

 Parameters

	owner_network_rule_id - the record ID of the desired Owner Network Rule
record.

 Link to this function

 host_disallowed(host_address)

 @spec host_disallowed(MscmpSystAuthn.Types.host_address()) ::
 {:ok, boolean()} | {:error, MscmpSystError.t()}

Indicates whether the provided host IP address is to be denied access to the
system.
This function returns a tuple in the form of {:ok, <disallowed>} where the
disallowed value is either true meaning that the requested host is
disallowed from authenticating with the system or false if the host is
permitted to attempt an authentication.

 Parameters

	host_address - the host IP address to test. Typically this will be the
host address of a user wishing to authenticate with the system.

 Examples

 An allowed host will return a false result tuple.
iex> import MscmpSystNetwork, only: [sigil_i: 2]
iex> MssubMcp.host_disallowed(~i"10.150.150.10")
{:ok, false}
 A disallowed host returns a true result tuple.
iex> import MscmpSystNetwork, only: [sigil_i: 2]
iex> MssubMcp.host_disallowed(~i"10.123.123.5")
{:ok, true}

 Link to this function

 host_disallowed?(host_address)

 @spec host_disallowed?(MscmpSystAuthn.Types.host_address()) :: boolean()

Indicates whether the provided host IP address is to be denied access to the
system, raising on error.
This function works the same as host_disallowed/1 except this function
returns its result without wrapping it in a result tuple. If an error is
encountered an exception is raised.

 Parameters

	host_address - the host IP address to test. Typically this will be the
host address of a user wishing to authenticate with the system.

 Examples

 An allowed host will return a false value.
iex> import MscmpSystNetwork, only: [sigil_i: 2]
iex> MssubMcp.host_disallowed?(~i"10.150.150.10")
false
 A disallowed host returns a true value.
iex> import MscmpSystNetwork, only: [sigil_i: 2]
iex> MssubMcp.host_disallowed?(~i"10.123.123.5")
true

 Link to this function

 update_global_network_rule(global_network_rule, update_params)

 @spec update_global_network_rule(
 Ecto.UUID.t() | Msdata.SystGlobalNetworkRules.t(),
 MscmpSystAuthn.Types.global_network_rule_params()
) ::
 {:ok, Msdata.SystGlobalNetworkRules.t()}
 | {:error, MscmpSystError.t() | Exception.t()}

Updates an existing Global Network Rule with new values.
This function works similar to create_global_network_rule/1 but updates an
existing Global Network Rule record rather than creating a new one.
On successful update, a result tuple in the form {:ok, <record>} is returned
where the <record> is the fully populated Data struct of the record just
updated. If an exception is raised this function will return a failure tuple
in the form of {:error, <exception data>}.

 Parameters

	global_network_rule - this value is either a fully populated
Msdata.SystGlobalNetworkRules struct of an existing
Global Network Rule record or the ID of such a record. If the data struct
is provided, Ecto optimistic locking is applied to the update operation.

	update_params - a map representing the values to use when updating the
Global Network Rule. All parameters are optional, with omission meaning
that the existing value should retain its current value. See
MscmpSystAuthn.Types.global_network_rule_params/0 for the
available attributes.

 Link to this function

 update_instance_network_rule(instance_network_rule, update_params)

 @spec update_instance_network_rule(
 Ecto.UUID.t() | Msdata.SystInstanceNetworkRules.t(),
 MscmpSystAuthn.Types.instance_network_rule_params()
) ::
 {:ok, Msdata.SystInstanceNetworkRules.t()}
 | {:error, MscmpSystError.t() | Exception.t()}

Updates an existing Instance Network Rule with new values.
This function works similar to create_instance_network_rule/2 but updates an
existing Instance Network Rule record rather than creating a new one.
On successful update, a result tuple in the form {:ok, <record>} is returned
where the <record> is the fully populated Data struct of the record just
updated. If an exception is raised this function will return a failure tuple
in the form of {:error, <exception data>}.

 Parameters

	instance_network_rule - this value is either a fully populated
Msdata.SystInstanceNetworkRules struct of an
existing Instance Network Rule record or the ID of such a record. If the
data struct is provided, Ecto optimistic locking is applied to the update
operation.

	update_params - a map representing the values to use when updating the
Instance Network Rule. All parameters are optional, with omission meaning
that the existing value should retain its current value. See
MscmpSystAuthn.Types.instance_network_rule_params/0 for the
available attributes.

 Link to this function

 update_owner_network_rule(owner_network_rule, update_params)

 @spec update_owner_network_rule(
 Ecto.UUID.t() | Msdata.SystOwnerNetworkRules.t(),
 MscmpSystAuthn.Types.owner_network_rule_params()
) ::
 {:ok, Msdata.SystOwnerNetworkRules.t()}
 | {:error, MscmpSystError.t() | Exception.t()}

Updates an existing Owner Network Rule with new values.
This function works similar to create_owner_network_rule/2 but updates an
existing Owner Network Rule record rather than creating a new one.
On successful update, a result tuple in the form {:ok, <record>} is returned
where the <record> is the fully populated Data struct of the record just
updated. If an exception is raised this function will return a failure tuple
in the form of {:error, <exception data>}.

 Parameters

	owner_network_rule - this value is either a fully populated
Msdata.SystOwnerNetworkRules struct of an existing
Owner Network Rule record or the ID of such a record. If the data struct
is provided, Ecto optimistic locking is applied to the update operation.

	update_params - a map representing the values to use when updating the
Owner Network Rule. All parameters are optional, with omission meaning
that the existing value should retain its current value. See
MscmpSystAuthn.Types.owner_network_rule_params/0 for the
available attributes.

 Account Code

 Link to this function

 create_or_reset_account_code(access_account_id, opts \\ [])

 @spec create_or_reset_account_code(
 MscmpSystAuthn.Types.access_account_id(),
 Keyword.t()
) ::
 {:ok, MscmpSystAuthn.Types.AuthenticatorResult.t()}
 | {:error, MscmpSystError.t() | Exception.t()}

Creates a new Account Code for an Access Account or resets the Account Code if
is already exists.
On successful Account Code Identity creation or reset, an Authenticator Result
value is returned via a success tuple ({:ok, <result>}). The expected form
of the result for a new Account Code is:
%{
 access_account_id: "c3c7fafd-5c45-11ed-ab46-f3d9be809bf9",
 account_identifier: "QY7QJTWH7MSK"
}
There is no associated Credential or Validator for this Identity Type.

 Parameters

	access_account_id - the record ID of the Access Account that will be
identified by the Account Code Identity.

	opts - a Keyword list of optional settings which can influence the
behavior of the function call. Available options are:
	account_code - this option overrides the randomly generated Account
Code with the value of this option. By default the system randomly
generates the Account Code.

	identity_token_length - overrides the number of characters to randomly
generate for use as the Account Code Identifier. The default value is 12.

	identity_tokens - overrides the character set used to create the
randomly generated Account Code Identifier. The default value is :b32c.
See the MscmpSystUtils.get_random_string/2 documentation for the
tokens parameter which receives this option for more information
regarding valid values for this setting.

 Link to this function

 get_account_code_by_access_account_id(access_account_id)

 @spec get_account_code_by_access_account_id(MscmpSystAuthn.Types.access_account_id()) ::
 {:ok, Msdata.SystIdentities.t() | :not_found} | {:error, MscmpSystError.t()}

Retrieves the Account Code Identity record defined for the requested Access
Account if one exists.
If no Account Code Identity exists for the requested Access Account a tuple in
the form of {:ok, :not_found} is returned.

 Parameters

	access_account_id - the Access Account record ID for which to retrieve
the Account Code Identity.

 Link to this function

 identify_access_account_by_code(account_code, owner_id)

 @spec identify_access_account_by_code(
 MscmpSystAuthn.Types.account_identifier(),
 MscmpSystInstance.Types.owner_id() | nil
) ::
 {:ok, Msdata.SystIdentities.t() | :not_found} | {:error, MscmpSystError.t()}

Identifies an Access Account by its Account Code identifier.
On successful identification, the Account Code Identity record which was found
based on the supplied parameters is returned via a success tuple. If the
function completes successfully but no Identity record is found for the
Identifier a value of {:ok, :not_found} is returned.

 Parameters

	account_code - the Account Code identifier which will identify the
Access Account

	owner_id - if the expected Access Account is an Owned Access Account,
the Owner must be identified. If the Access Account is Unowned, this
parameter should be nil.

 Link to this function

 revoke_account_code(access_account_id)

 @spec revoke_account_code(MscmpSystAuthn.Types.access_account_id()) ::
 {:ok, :deleted | :not_found} | {:error, MscmpSystError.t()}

Revokes a previously create Account Code Identity from an Access Account,
deleting it from the system.
On successful deletion a success tuple in the form {:ok, :deleted} is
returned. If no existing Account Code Identity is found a tuple in this form
{:ok, :not_found} is returned. All other outcomes are error conditions
resulting in the return of an error tuple.

 Parameters

	access_account_id - the Access Account record ID from which to revoke
the Account Code Identity.

 Authenticator Management

 Link to this function

 access_account_credential_recoverable!(access_account_id)

 @spec access_account_credential_recoverable!(MscmpSystAuthn.Types.access_account_id()) ::
 :ok | :not_found | :existing_recovery

Indicates if an Access Account's Password Credential is recoverable or not.
Access Account Password Credentials are only recoverable when they: 1) exist,
and 2) are not already awaiting recovery. When the Password Credential is
recoverable this function will return a simple :ok value. If the Access
Account's Password Credential already has an issued recovery underway, the
value :existing_recovery is returned. If the Access Account lacks a
Password Credential record to recover, the value :not_found is returned. Any
errors encountered cause the function to raise an exception.

 Parameters

	access_account_id - the record ID of the Access Account which owns the
Password Credential to test for recoverability.

 Link to this function

 create_authenticator_api_token(access_account_id, opts \\ [])

 @spec create_authenticator_api_token(
 MscmpSystAuthn.Types.access_account_id(),
 Keyword.t()
) ::
 {:ok, MscmpSystAuthn.Types.AuthenticatorResult.t()}
 | {:error, MscmpSystError.t() | Exception.t()}

Creates an API Token Authenticator for the requested Access Account.
On successful API Token Authenticator creation, a success tuple is returned
where the value element is an Authenticator Result in the form of:
{ :ok,
 %{
 access_account_id: "c3c7fafd-5c45-11ed-ab46-f3d9be809bf9",
 account_identifier: "EQH2jj38ha4qnYWAC8VZ",
 credential: "8N5Tp81aeOCrYW9PECANrcwKCroSet3MlMp5BbKb"
}}
It is important to note that this result value is the only time that the API
Token Credential plaintext is available. After the function result is
discarded the credential is no longer obtainable in plaintext form.

 Parameters

	access_account_id - the record ID of the Access Account for which to
create the API Token Authenticator.

	opts - a Keyword List of optional values which changes the default
behavior of the Authenticator creation process. Available options are:
	identity_token_length - this option overrides the default number of
random characters to generate for the API Token Identity identifier. The
default number of characters generated is 20.

	identity_tokens - overrides the default character set to use in the
generation of the API Token Identity identifier. The default value is
:mixed_alphanum. See the MscmpSystUtils.get_random_string/2
documentation for the tokens parameter which receives this option for
more information regarding valid values for this setting.

	external_name - API Token Identities permit Access Account holder
naming of the Identity as it may be common for an one Access Account to
require multiple API Token Authenticators for different purposes. This
option allows that name to be set at Identity creation time. The default
value is nil.

	credential_token_length - this option overrides the default number of
random characters to generate for the API Token Credential. The default
number of characters generated is 40.

	credential_tokens - overrides the default character set to use in the
generation of the API Token Credential. The default value is
:mixed_alphanum. See the MscmpSystUtils.get_random_string/2
documentation for the tokens parameter which receives this option for
more information regarding valid values for this setting.

	credential_token - overrides the system generated API Token Credential
with the value of this option. The default is to allow the system to
automatically generate the credential.

 Link to this function

 create_authenticator_email_password(access_account_id, email_address, plaintext_pwd, opts \\ [])

 @spec create_authenticator_email_password(
 MscmpSystAuthn.Types.access_account_id(),
 MscmpSystAuthn.Types.account_identifier(),
 MscmpSystAuthn.Types.credential(),
 Keyword.t()
) ::
 {:ok, MscmpSystAuthn.Types.AuthenticatorResult.t()}
 | {:error, MscmpSystError.t() | Exception.t()}

Creates an Email/Password Authenticator for an Access Account.
This function creates an Email Identity, Password Credential, and optionally
an Identity Validation Authenticator (created by default). This function is
typically used on adding a new Access Account to the system. The process is
wrapped in a database transaction so if any one part of the Authenticator
creation process fails, all parts should fail.
This function will fail if you attempt to create an Authenticator of this
type for an Access Account which already has one. In the case of Email
Identity replacement, use the specific Identity process to create a new Email
Identity instead of this more expansive process.
On successful save of the Authenticator records, a success tuple is returned
where the value element of the tuple will include basic data that might be
required for later processing.
If Email/Password Authenticator was created requiring validation (the
default), the success tuple's value element will include data required to
process the Validation Authenticator:
{:ok,
 %{
 access_account_id: "c3c7fafd-5c45-11ed-ab46-f3d9be809bf9",
 account_identifier: "SomeEmail@somedomain.com",
 validation_credential: "Uo0kPoCOZd004g4X7IFWg3iJ7pz7XiBRBDkBGGiu",
 validation_identifier: "5D7i6XmmH0HpYL72tePlEdSUMVL9ygMrEsDSGoTE"
}}
Note that this is the only time the Validation Authenticator is provided and
the Validation Credential plaintext is not recoverable after this return value
is provided.
When a Validation Authenticator is not created, no validation data will be
included in the result:
{:ok,
 %{
 access_account_id: "c3c7fafd-5c45-11ed-ab46-f3d9be809bf9",
 account_identifier: "SomeEmail@somedomain.com"
}}

 Parameters

	access_account_id - the Access Account for whom the Email/Password
Authenticator is being created.

	email_address - the email address which will identify the Access
Account.

	plaintext_pwd - the candidate password for use a the Credential in
Email/Password authentication processes.

 Link to this function

 request_identity_validation(target_identity, opts \\ [])

 @spec request_identity_validation(
 MscmpSystAuthn.Types.identity_id() | Msdata.SystIdentities.t(),
 Keyword.t()
) ::
 {:ok, MscmpSystAuthn.Types.AuthenticatorResult.t()}
 | {:error, MscmpSystError.t() | Exception.t()}

Requests the creation of a Validation Token Authenticator for the specified
Identity.
On successful creation of the requested Validation Token Authenticator, an
Authenticator Result will be returned as the value element of a success tuple:
{ :ok,
 %{
 access_account_id: "c3c7fafd-5c45-11ed-ab46-f3d9be809bf9",
 validation_identifier: "psYFOfuULJPTbs5MUvOYTyt71fAbQCj7XcmerRlQ",
 validation_credential: "zz29w7l5Ev7vuRlGFHcPPjLTXjepdbYlyQwbBjDe"
}}
Importantly, the system generated Validation Token identifier and plaintext
credential are returned to the caller. This is the only opportunity to obtain
the plaintext credential; after the return value of the function is disposed
of there is no way to once again retrieve the plaintext of the Validation
Token Credential.
Once the Validation Token Authenticator has been successfully created, the
target Identity (typically an Email Identity) may not be used for
authentication until the Validation Token itself has been successfully
authenticated via the authenticate_validation_token/4 function.
The created Validation Token Authenticator will expire after a time. After
expiration the the Authenticator will no longer be to be authenticated by
authenticate_validation_token/4. The only way to validate the target
Identity at that point is to create a new Validation Token Authenticator for
the Identity using this function.

 Parameters

	target_identity - either the record ID or the
Msdata.SystIdentities struct of the Identity record
to validate. Typically this Identity will be an Email Identity.

	opts - a Keyword List of options which can change the behavior to the
Identity validation request. The available options are:
	expiration_hours - overrides the default number of hours after which
to consider the Validation Authenticator expired. By default the
Validation Authenticator expires 24 hours after creation.

	identity_token_length - this option overrides the default number of
random characters to generate for the Validation Token Identity
identifier. The default number of characters generated is 40.

	identity_tokens - overrides the default character set to use in the
generation of the Validation Token Identity identifier. The default value
is :mixed_alphanum. See the MscmpSystUtils.get_random_string/2
documentation for the tokens parameter which receives this option for
more information regarding valid values for this setting.

	credential_token_length - this option overrides the default number of
random characters to generate for the Validation Token Credential. The
default number of characters generated is 40.

	credential_tokens - overrides the default character set to use in the
generation of the Validation Token Credential. The default value is
:mixed_alphanum. See the MscmpSystUtils.get_random_string/2
documentation for the tokens parameter which receives this option for
more information regarding valid values for this setting.

	credential_token - overrides the system generated Validation
Credential with the value of this option. The default is to allow the
system to automatically generate the credential.

 Link to this function

 request_password_recovery(access_account_id, opts \\ [])

 @spec request_password_recovery(MscmpSystAuthn.Types.access_account_id(), Keyword.t()) ::
 {:ok, MscmpSystAuthn.Types.AuthenticatorResult.t()}
 | {:error, MscmpSystError.t() | Exception.t()}

Requests to start a Password Credential recovery process for the specified
Access Account.
Assuming that the Access Account's Password Credential exists and isn't
already being recovered, this function will create a new Recovery Token
Authenticator for the Access Account's Password Credential.
On successful creation of the requested Recovery Token Authenticator, an
Authenticator Result will be returned as the value element of a success tuple:
{ :ok,
 %{
 access_account_id: "c3c7fafd-5c45-11ed-ab46-f3d9be809bf9",
 account_identifier: "acdyItesdmUvUoM7mKwPKd3mrBBnH87L2WA1DPip",
 credential: "WYbFG2vkJOLD5ITX9tSE5OTZ9JlHdJE8BQ8Ukiiq"
}}
Importantly, the system generated Recovery Token account identifier and
plaintext credential are returned to the caller. This is the only opportunity
to obtain the plaintext credential; after the return value of the function is
disposed of there is no way to once again retrieve the plaintext of the
Recovery Token Credential.
The existence of a Recovery Token Authenticator for a Password Credential does
not prevent that Password Credential from continuing to be used in the
authentication process.
A Recovery Token Authenticator will expire after a time. After expiration the
Recovery Token will no longer be able to be authenticated with
authenticate_recovery_token/4. Any further recovery of the Password
Credential will require a new Recovery Token be created.

 Parameters

	access_account_id - the record ID of the Access Account to which the
Password Credential needing recovering belongs.

	opts - a Keyword List of options which can change the behavior to the
password recovery request. The available options are:
	expiration_hours - overrides the default number of hours after which
to consider the Recovery Authenticator expired. By default the Recovery
Authenticator expires 24 hours after creation.

	identity_token_length - this option overrides the default number of
random characters to generate for the Recovery Token Identity identifier.
The default number of characters generated is 40.

	identity_tokens - overrides the default character set to use in the
generation of the Recovery Token Identity identifier. The default value
is :mixed_alphanum. See the MscmpSystUtils.get_random_string/2
documentation for the tokens parameter which receives this option for
more information regarding valid values for this setting.

	credential_token_length - this option overrides the default number of
random characters to generate for the Recovery Token Credential. The
default number of characters generated is 40.

	credential_tokens - overrides the default character set to use in the
generation of the Recovery Token Credential. The default value is
:mixed_alphanum. See the MscmpSystUtils.get_random_string/2
documentation for the tokens parameter which receives this option for
more information regarding valid values for this setting.

	credential_token - overrides the system generated Recovery Credential
with the value of this option. The default is to allow the system to
automatically generate the credential.

 Link to this function

 reset_password_credential(access_account_id, new_credential)

 @spec reset_password_credential(
 MscmpSystAuthn.Types.access_account_id(),
 MscmpSystAuthn.Types.credential()
) ::
 :ok
 | MscmpSystAuthn.Types.credential_set_failures()
 | {:error, MscmpSystError.t()}

Allows for an existing password to be changed to a new password.
The assumption is that a Password Credential already exists and that only the
password itself is being changed from an old value to a new value.
This function ensures that the new password meets all applicable Password
Rules prior to completing the change. This function will not allow you to set
the password to an invalid value.
Finally, in the case of a user initiated password change, it is traditional
that the user has to re-authenticate or provide their current password to
verify they are, in fact, the person initiating the change. This function
does not try to achieve this goal. The scope of this function assumes that
any such confirmation of identity has been completed satisfactorily elsewhere.
On successful Password Credential reset this function will return :ok. If
the new credential fails to meet the Password Rule criteria that applies to
it, the function will return a failure tuple of type
MscmpSystAuthn.Types.credential_set_failures/0. All other return
conditions are errors and result in an error tuple.

 Parameters

	access_account_id - the Access Account for whom the Password is being
changed.

	new_credential - the new Password which will become the credential on
the successful completion of the function.

 Link to this function

 revoke_api_token(identity)

 @spec revoke_api_token(MscmpSystAuthn.Types.identity_id() | Msdata.SystIdentities.t()) ::
 {:ok, :deleted | :not_found} | {:error, MscmpSystError.t()}

Revokes the request API Token Authenticator by deleting it from the system.
API Token Authenticators will regularly need to be decommissioned from the
system by the Access Account holders they represent. By revoking an API
Token it is deleted from system.
A successful deletion will return a success tuple if the form
{:ok, :deleted}. If the API Token Identity is not found this function will
return a success tuple of {:ok, :not_found}. Any other outcome is an error
and results in an error tuple being returned.

 Parameters

	identity - either the record ID of the API Token Identity to revoke or
the current-state Msdata.SystIdentities struct of
that record.

 Link to this function

 revoke_password_recovery(access_account_id)

 @spec revoke_password_recovery(MscmpSystAuthn.Types.access_account_id()) ::
 {:ok, :deleted | :not_found} | {:error, MscmpSystError.t() | Exception.t()}

Revokes the Recovery Token Authenticator for a previously initiated Password
Credential recovery.
While Recovery Token Authenticators expire of their own accord after a time,
they may also explicitly be revoked. In reality this means simply deleting
the Recovery Token Authenticator from the system.
The return value of this function on successful execution will be the success
tuple {:ok, :deleted}. If a recovery is not already underway for the
requested Access Account, the function will return successfully but will
indicate that no action took place with a return of {:ok, :not_found}. Any
other condition is an error condition and the return value will be an error
tuple indicating the nature of the issue.

 Parameters

	access_account_id - identifies the Access Account for whom the Recovery
Token Authenticator should be revoked. The expected value is the record ID
of the Access Account.

 Link to this function

 revoke_validator_for_identity_id(target_identity_id)

 @spec revoke_validator_for_identity_id(MscmpSystAuthn.Types.identity_id()) ::
 {:ok, :deleted | :not_found} | {:error, MscmpSystError.t() | Exception.t()}

Revokes a Validation Authenticator ("Validator") issued for the requested
Identity.
While Validators will expire on their own if not confirmed first, there are
cases where Validators should be revoked prior to that time, such as if the
Validator communication to the user has been lost and a new Validator needs to
be generated.
The return value is a result tuple which indicates whether or not the
revocation happened ({:ok, :deleted}), if the Validator was not found
({:ok, :not_found}), or an error tuple in any other circumstance.

 Parameters

	target_identity_id - the record ID of the Identity record which the
Validator was meant to validate. So if the Validator to revoke was for an
Email Identity, this value would be the ID of the Email Identity and not the
Validation Identity.

 Link to this function

 update_api_token_external_name(identity, external_name)

 @spec update_api_token_external_name(
 MscmpSystAuthn.Types.identity_id() | Msdata.SystIdentities.t(),
 String.t() | nil
) :: {:ok, Msdata.SystIdentities.t()} | {:error, MscmpSystError.t()}

Updates the External Name value of an existing API Token Identity.
API Token Identities permit Access Account holder naming of the Identity as it
may be common for an one Access Account to require multiple API Token
Authenticators for different purposes.
On success this function returns a success tuple where the value element of
the tuple is the updated Msdata.SystIdentities struct.
On error, an error tuple is returned.

 Parameters

	identity - either the record ID of the API Token Identity to update or
the current-state Msdata.SystIdentities struct of
that record.

	external_name - the text of the updated External Name value or nil to
remove the text of an existing non-nil value.

 Authentication

 Link to this function

 authenticate_api_token(identifier, plaintext_token, host_addr, instance_id, opts \\ [])

 @spec authenticate_api_token(
 MscmpSystAuthn.Types.account_identifier(),
 MscmpSystAuthn.Types.credential(),
 MscmpSystNetwork.Types.addr_structs(),
 MscmpSystInstance.Types.instance_id(),
 Keyword.t()
) ::
 {:ok, MscmpSystAuthn.Types.AuthenticationState.t()}
 | {:error, MscmpSystError.t()}

Identities and authenticates an Access Account using an API Token
Authenticator.
The return value of this function is a result tuple where a success tuple
({:ok, <value>}) indicates that the function processed without error, not
that the API Token Authenticator was successfully authenticated. The value
element of the success tuple, the Authentication State, carries information
about the actual outcome of the authentication attempt; see
MscmpSystAuthn.Types.AuthenticationState.t/0 for more about the
specific information carried by the Authentication State value. Otherwise,
an error tuple is returned indicating the nature of the processing failure.
The authentication process executed by this function is not interruptible.
The initial call to this function must contain all parameter values required
to fully complete the authentication process. Any missing information will
cause the authentication attempt to be rejected.

 Parameters

	identifier - the identifier defined by the API Token identifier.
Typically this would have been a system generated random string of
characters available at API Token Authenticator creation time.

	plaintext_token - the plaintext API Token credential. Typically this
would have been a system generated random string of characters available at
API Token Authenticator creation time.

	host_address - the apparent origin host IP address from where the
authentication attempt is originating. This value is used in the
enforcement of applicable Network Rules.

	opts - a Keyword List of values that either optionally override default
behaviors of this function or are optionally required. The available
options are:
	owning_owner_id - if the Access Account is an Owned Access Account,
this value must be set to the record ID of the Access Account's Owner.
Otherwise it must be set nil or not provided. The default value is
nil.

	instance_id - the record ID of the Application Instance to which the
Access Account holder wishes to authenticate. This value is required must
be provided at function call time or the Authentication State will be
returned in a :rejected status. In special cases where the
authentication attempt is outside of the context of a specific Instance,
the special value :bypass may be used for this option indicating that
the authentication attempt may skip the permitted Instance check. There is
no default value (default nil).

	host_ban_rate_limit - overrides the default host IP address based Rate
Limit. The value is set via a tuple in the following form:
{<Maximum Attempts>, <Time Window in Seconds>}. The default value is 30
attempts over a time window of 2 hours.

	identifier_rate_limit - overrides the default identifier based Rate
Limit. The value is set via a tuple in the following form:
{<Maximum Attempts>, <Time Window in Seconds>}. The default value is 5
attempts over a time window of 30 minutes.

	deadline_minutes - overrides the default number of minutes that an
authentication process can take before being rejected for taking too long.
This deadline is needed because an arbitrary time can pass due to user
interaction if the authenticator allows for an interruptable
authentication process. The default deadline allows for 5 minutes to
complete the authentication process.

 Link to this function

 authenticate_email_password(authentication_state, opts \\ [])

 @spec authenticate_email_password(
 MscmpSystAuthn.Types.AuthenticationState.t(),
 Keyword.t()
) ::
 {:ok, MscmpSystAuthn.Types.AuthenticationState.t()}
 | {:error, MscmpSystError.t()}

Identifies and authenticates an Access Account on the basis of a starting
Authentication State value constructed for Email/Password authentication.
This function works the same as authenticate_email_password/4 except that it
expects an existing Authentication State value to contain the basic
information to process the authentication, with other parameters provided via
the opts parameter. This function is typically used to continue a
previously interrupted call to authenticate_email_password/4 and supplying
it the necessary additional information to continue processing the
authentication to completion.
The options available for use here are the same as for
authenticate_email_password/4. However the options specified here are only
valid if they are applied to authentication process operations that are still
pending when this function is called. Options influencing operations
previously processed, such as owning_owner_id as used in Access Account
identification will simply be ignored if they are different in the resumption
of the process than they were in the initiating call.
See authenticate_email_password/4 for a discussion of the possible return
values.

 Link to this function

 authenticate_email_password(email_address, plaintext_pwd, host_address, opts \\ [])

 @spec authenticate_email_password(
 MscmpSystAuthn.Types.account_identifier(),
 MscmpSystAuthn.Types.credential(),
 MscmpSystNetwork.Types.addr_structs(),
 Keyword.t()
) ::
 {:ok, MscmpSystAuthn.Types.AuthenticationState.t()}
 | {:error, MscmpSystError.t()}

Identities and authenticates an Access Account using an Email/Password
Authenticator.
The return value of this function is a result tuple where a success tuple
({:ok, <value>}) indicates that the function processed without error, not
that the authentication was successful. The value element of the success
tuple, the Authentication State, carries information about the outcome of the
authentication attempt; see
MscmpSystAuthn.Types.AuthenticationState.t/0 for more about the
specific information carried by the Authentication State value. Otherwise,
an error tuple is returned indicating the nature of the processing failure.
Email/Password authentication is an interruptible process, meaning that this
function may return prior to the authentication having been fully processed to
a final result. The two most common examples of when this partial processing
may happen are 1) the Application Instance was not initially identified; and
	further authentication is required such as when Multi-Factor Authentication
is required. In these cases the returned Authentication State is resubmitted
for process via authenticate_email_password/2 along with the updated
information which allows authentication processing to complete.

 Parameters

	email_address - this is the username in the form of an email address
used to identify the correct Email Identity record which in turn identifies
a specific Access Account.

	plaintext_pwd - the Access Account holder's password as submitted in
plaintext. This is the credential that will be authenticated using the
Password Credential record belonging to the identified Access Account.

	host_address - the apparent origin host IP address from where the
authentication attempt is originating. This value is used in the
enforcement of applicable Network Rules.

	opts - a Keyword List of values that either optionally override default
behaviors of this function, are optionally required, or are required on a
deferred basis (eventually required). The available options are:
	owning_owner_id - if the Access Account is an Owned Access Account,
this value must be set to the record ID of the Access Account's Owner.
Otherwise it must be set nil or not provided. The default value is
nil.

	instance_id - the record ID of the Application Instance to which the
Access Account holder wishes to authenticate. A final value for
instance_id is not required when the Email/Password authentication process
is initiated but is required for it to complete. If this value is not
initially provided, the function will be interrupted returning an
Authentication State status value of :pending. Deferral may be
appropriate if, for example, we want to allow the Access Account holder to
select the specific Instance they wish to access from a list of their
permitted Instances. Final resolution of the value must reference an
Instance for which the Access Account permitted authentication attempts or
must be set :bypass if the authentication attempt is a special case
where a specific Instance is not relevant. The default value of this
option is nil.

	host_ban_rate_limit - overrides the default host IP address based Rate
Limit. The value is set via a tuple in the following form:
{<Maximum Attempts>, <Time Window in Seconds>}. The default value is 30
attempts over a time window of 2 hours.

	identifier_rate_limit - overrides the default identifier based Rate
Limit. The value is set via a tuple in the following form:
{<Maximum Attempts>, <Time Window in Seconds>}. The default value is 5
attempts over a time window of 30 minutes.

	deadline_minutes - overrides the default number of minutes that an
authentication process can take before being rejected for taking too long.
This deadline is needed because an arbitrary time can pass due to user
interaction, such as selecting an Instance or providing an MFA credential.
The default value is 5 minutes from the time the authentication process is
started.

 Link to this function

 authenticate_recovery_token(identifier, plaintext_token, host_addr, opts \\ [])

 @spec authenticate_recovery_token(
 MscmpSystAuthn.Types.account_identifier(),
 MscmpSystAuthn.Types.credential(),
 MscmpSystNetwork.Types.addr_structs(),
 Keyword.t()
) ::
 {:ok, MscmpSystAuthn.Types.AuthenticationState.t()}
 | {:error, MscmpSystError.t()}

Confirms an Access Account's password Recovery Token Authenticator.
The return value of this function is a result tuple where a success tuple
({:ok, <value>}) indicates that the function processed without error, not
that the Recovery Token Authenticator was successfully authenticated. The
value element of the success tuple, the Authentication State, carries
information about the actual outcome of the authentication attempt; see
MscmpSystAuthn.Types.AuthenticationState.t/0 for more about the
specific information carried by the Authentication State value. Otherwise,
an error tuple is returned indicating the nature of the processing failure.
If the Authentication State's status is returned as :authenticated, the
process of Password Credential recovery may be undertaken. On success the
Recovery Token Authenticator is deleted from the system, but no further action
is taken by this function. The actual process of recovering a password is
external to this function.
The authentication process executed by this function is not interruptible.
The initial call to this function must contain all parameter values required
to fully complete the authentication process. Any missing information will
cause the authentication attempt to be rejected.

 Parameters

	identifier - the identifier defined by the Recovery Token identifier.
Typically this would have been a system generated random string of
characters available at Recovery Token Authenticator creation time.

	plaintext_token - the plaintext Recovery Token credential. Typically
this would have been a system generated random string of characters
available at Recovery Token Authenticator creation time.

	host_address - the apparent origin host IP address from where the
authentication attempt is originating. This value is used in the
enforcement of applicable Network Rules.

	opts - a Keyword List of values that either optionally override default
behaviors of this function or are optionally required. The available
options are:
	owning_owner_id - if the Access Account is an Owned Access Account,
this value must be set to the record ID of the Access Account's Owner.
Otherwise it must be set nil or not provided. The default value is
nil.

	host_ban_rate_limit - overrides the default host IP address based Rate
Limit. The value is set via a tuple in the following form:
{<Maximum Attempts>, <Time Window in Seconds>}. The default value is 30
attempts over a time window of 2 hours.

	identifier_rate_limit - overrides the default identifier based Rate
Limit. The value is set via a tuple in the following form:
{<Maximum Attempts>, <Time Window in Seconds>}. The default value is 5
attempts over a time window of 30 minutes.

	deadline_minutes - overrides the default number of minutes that an
authentication process can take before being rejected for taking too long.
This deadline is needed because an arbitrary time can pass due to user
interaction if the authenticator allows for an interruptable
authentication process. The default deadline allows for 5 minutes to
complete the authentication process.

 Link to this function

 authenticate_validation_token(identifier, plaintext_token, host_address, opts \\ [])

 @spec authenticate_validation_token(
 MscmpSystAuthn.Types.account_identifier(),
 MscmpSystAuthn.Types.credential(),
 MscmpSystNetwork.Types.addr_structs(),
 Keyword.t()
) ::
 {:ok, MscmpSystAuthn.Types.AuthenticationState.t()}
 | {:error, MscmpSystError.t()}

Confirms a specific Access Account Identity record as being valid for use.
The return value of this function is a result tuple where a success tuple
({:ok, <value>}) indicates that the function processed without error, not
that the validation was successful. The value element of the success
tuple, the Authentication State, carries information about the actual outcome
of the authentication attempt; see
MscmpSystAuthn.Types.AuthenticationState.t/0 for more about the
specific information carried by the Authentication State value. Otherwise,
an error tuple is returned indicating the nature of the processing failure.
If the Authentication State's status is returned as :authenticated, the
validation process succeeded. On success the target Identity record has its
validated field set to the current date/time and the Validation
Authenticator is deleted from the system.
The authentication process executed by this function is not interruptible.
The initial call to this function must contain all parameter values required
to fully complete the authentication process. Any missing information will
cause the authentication attempt to be rejected.

 Parameters

	identifier - the identifier defined by the Validation Token identifier.
Typically this would have been a system generated random string of
characters available at Validation Token Authenticator creation time.

	plaintext_token - the plaintext Validation Token credential. Typically
this would have been a system generated random string of characters
available at Validation Token Authenticator creation time.

	host_address - the apparent origin host IP address from where the
authentication attempt is originating. This value is used in the
enforcement of applicable Network Rules.

	opts - a Keyword List of values that either optionally override default
behaviors of this function or are optionally required. The available
options are:
	owning_owner_id - if the Access Account is an Owned Access Account,
this value must be set to the record ID of the Access Account's Owner.
Otherwise it must be set nil or not provided. The default value is
nil.

	host_ban_rate_limit - overrides the default host IP address based Rate
Limit. The value is set via a tuple in the following form:
{<Maximum Attempts>, <Time Window in Seconds>}. The default value is 30
attempts over a time window of 2 hours.

	identifier_rate_limit - overrides the default identifier based Rate
Limit. The value is set via a tuple in the following form:
{<Maximum Attempts>, <Time Window in Seconds>}. The default value is 5
attempts over a time window of 30 minutes.

	deadline_minutes - overrides the default number of minutes that an
authentication process can take before being rejected for taking too long.
This deadline is needed because an arbitrary time can pass due to user
interaction if the authenticator allows for an interruptable
authentication process. The default deadline allows for 5 minutes to
complete the authentication process.

 Session Management

 Link to this function

 create_session(session_data, opts \\ [])

 @spec create_session(map(), Keyword.t()) ::
 {:ok, MscmpSystSession.Types.session_name()} | {:error, MscmpSystError.t()}

Creates a new session returning the session name for future reference.
Using a starting set of data and a expiration period, creates a new Session
record. The return value is either a success tuple including the generated
name of the session record or an error tuple explaining the failure.
Currently, the Session name is an automatically generated random 96 bytes run
through base 64 encoding.

 Parameters

	session_data - the initial Session Data to use in creating the new
Session record in the database. Currently the expectation is that this
value will be any arbitrary Map. This parameter is required.

	opts - a Keyword List of optional parameters. The available parameters
are:
	session_name - a binary to use for the session name rather than
letting the system create a random session name. The default behavior is
for the system to set the session name using generate_session_name/0.

	expires_after - the number of seconds for which the session will be
considered valid. The default value for this setting via this API is the
current value of the MCP integer setting mssub_mcp_session_expiration;
by default that value is 3,600 seconds (1 hour).

 Examples

Creating a new Session with the default expiration time.
iex> {:ok, session_name} =
...> MssubMcp.create_session(%{test: "test"})
iex> is_binary(session_name)
true

 Link to this function

 delete_session(session_name)

 @spec delete_session(MscmpSystSession.Types.session_name()) ::
 :ok | {:ok, :not_found} | {:error, MscmpSystError.t()}

Deletes the named Session record from the database.
This is the de facto method for terminating a session.
Unlike the other functions in this module which treat expired Session records
as though they've not been found, deleting an expired Session is permitted and
will return the same value as deleting an unexpired Session record.

 Parameters

	session_name - the Session Name that was generated by create_session/2
at Session create time. This argument is required.

 Examples

Deleting a Session record.
iex> MssubMcp.delete_session("example_delete_session")
:ok
Attempting to delete a nonexistent Session returns the not found value.
iex> MssubMcp.delete_session("nonexistent_session")
{:ok, :not_found}

 Link to this function

 generate_session_name()

 @spec generate_session_name() :: MscmpSystSession.Types.session_name()

Generates a random Session Name using the current formulation for automatic
session name generation.
Currently generated Session Names are strings of 16 random characters using a
mixed case, alphanumeric character set.

 Examples

Generating a random name.
iex> session_name = MssubMcp.generate_session_name()
iex> String.length(session_name) == 16
true

 Link to this function

 get_session(session_name, opts \\ [])

 @spec get_session(MscmpSystSession.Types.session_name(), Keyword.t()) ::
 {:ok, MscmpSystSession.Types.session_data()}
 | {:ok, :not_found}
 | {:error, MscmpSystError.t()}

Retrieves the Session Data for the named Session and resets the Session
Expiration.
It should be noted that reading a Session will also refresh the expiration of
that Session's expiration date.
Trying to retrieve the Session data of an already expired Session results in
a not found tuple being returned ({:ok, :not_found}).

 Parameters

	session_name - the Session Name that was generated by create_session/2
at Session create time. This argument is required.

	opts - a Keyword List of optional parameters. The available parameters
are:
	expires_after - the number of seconds for which the session will be
considered valid. The default value for this setting via this API is the
current value of the MCP integer setting mssub_mcp_session_expiration;
by default that value is 3,600 seconds (1 hour).

 Examples

Retrieving a Session and setting the renewed expiration date/time to 30
minutes from retrieval time.
iex> {:ok, %{}} = MssubMcp.get_session("example_session", expires_after: 1800)
Attempting to retrieve an expired Session returns the not found value.
iex> MssubMcp.get_session("example_expired_session")
{:ok, :not_found}

 Link to this function

 purge_expired_sessions(opts \\ [])

 @spec purge_expired_sessions(Keyword.t()) :: :ok | {:error, MscmpSystError.t()}

Purges the database of previously expired Session records.
The intention of this function is for it to be called on a periodic, scheduled
basis in order to keep the system clean of expired Sessions. The expectations
are that the purge process may take some time. Currently, 4 minutes are
allotted for the running of the process prior to timing out, so a schedule
more aggressive than once every 5 minutes is not advised.

 Parameters

	opts - a Keyword List of optional parameters. The available parameters
are:
	db_timeout - the number of seconds to allow the database DELETE query
to run before timing out the transaction. The default value is 300
(5 minutes).

 Link to this function

 refresh_session_expiration(session_name, opts \\ [])

 @spec refresh_session_expiration(MscmpSystSession.Types.session_name(), Keyword.t()) ::
 :ok | {:ok, :not_found} | {:error, MscmpSystError.t()}

Refreshes the Session expiration date/time of the identified record.
The function only returns its success status absent any data.
Do note that all other interactions with the Session will also refresh the
Session expiration date/time so in many cases there is no need to call this
function explicitly. Typically you'd only call this function if you've had
interaction with the user, but not needed to access the session for some time.
Trying to refresh the expiration date/time of an already expired Session will
be treated as a "not found" record.

 Parameters

	session_name - the Session Name that was generated by create_session/2
at Session create time. This argument is required.

	opts - a Keyword List of optional parameters. The available parameters
are:
	expires_after - the number of seconds for which the session will be
considered valid. The default value for this setting via this API is the
current value of the MCP integer setting mssub_mcp_session_expiration;
by default that value is 3,600 seconds (1 hour).

 Examples

Refreshing a Session expiration date/time to 30 minutes from refresh time.
iex> MssubMcp.refresh_session_expiration("example_session", expires_after: 1800)
:ok
Attempting to refresh an already expired Session returns the not found value.
iex> MssubMcp.refresh_session_expiration("example_expired_session")
{:ok, :not_found}

 Link to this function

 update_session(session_name, session_data, opts \\ [])

 @spec update_session(
 MscmpSystSession.Types.session_name(),
 MscmpSystSession.Types.session_data(),
 Keyword.t()
) :: :ok | {:ok, :not_found} | {:error, MscmpSystError.t()}

Replaces the Session Data of the named Session record with the Session Data
provided.
As with other kinds of interactions with the Session, updating the Session
data will also update the expiration date/time.
Attempting to update the Session Data of an already expired Session will
be treated as attempting to update a not found record.

 Parameters

	session_name - the Session Name that was generated by create_session/2
at Session create time. This argument is required.

	session_data - the updated Session Data which replaces the existing
Session Data. Currently the expectation is that this value will be any
arbitrary Map. This argument is required.

	opts - a Keyword List of optional parameters. The available parameters
are:
	expires_after - the number of seconds for which the session will be
considered valid. The default value for this setting via this API is the
current value of the MCP integer setting mssub_mcp_session_expiration;
by default that value is 3,600 seconds (1 hour).

 Examples

Updating a Session with new data and resetting the expiration date/time to
30 minutes from update time.
iex> MssubMcp.update_session("example_update_session", %{updated_key: "updated_value"},
...> expires_after: 1800)
:ok
iex> MssubMcp.get_session("example_update_session")
{:ok, %{"updated_key" => "updated_value"}}
Attempting to update an already expired Session returns the not found value.
iex> MssubMcp.update_session("example_expired_session", %{updated_key: "updated_value"})
{:ok, :not_found}

 Permissions

 Link to this function

 compare_scopes(test_scope, standard_scope)

 @spec compare_scopes(
 MscmpSystPerms.Types.rights_scope() | String.t(),
 MscmpSystPerms.Types.rights_scope() | String.t()
) :: :eq | :gt | :lt

Compares two Scope values and returns a value indicating the relative
expansiveness of Scope.
Scopes restrict, to varying degrees, how much data a user might access for a
given Right. We can compare Scopes relative to how much more or less data
a Scope grants to a user and that's what this function does. Scopes granting
more expansive access to data are considered greater than Scopes granting data
on more restrictive terms. Of course any two scopes may be equal as well.
The return value is an atom indicating whether the Scope in the first
parameter position is greater than, less than, or equal to the expansiveness
of Scope in the second parameter position. These return values are:
	:eq - both the first and second Scopes are equal in terms of the
expansiveness and are considered 'equal' to each other.

	:gt - the first Scope parameter confers a greater expansiveness than the
second Scope parameter and is considered 'greater than' the Scope of the
second parameter.

	:lt - the first Scope parameter confers a lesser expansiveness than the
second Scope parameter and is considered 'less than' the Scope of the second
parameter.

 Link to this function

 get_effective_perm_grants(selector, opts \\ [])

 @spec get_effective_perm_grants(
 MscmpSystMcpPerms.Types.AccessAccountPermsSelector.t(),
 Keyword.t()
) ::
 {:ok, MscmpSystPerms.Types.perm_grants()} | {:error, MscmpSystError.t()}

Provides the effective Permissions/Rights/Scopes for the user context
identified by the selector as calculated from all effective grants and
revocations.
This function answers the question, "what rights does this user really have?"
On successful execution, a success tuple is returned including a map of the
selected Permissions and the Rights/Scopes granted. Errors will result in the
return of an error tuple.

 Parameters

	selector - this value is a struct which determines the specific
implementation of this function to call and which contains the keys/values
to use in selecting which Permission and Permission Role Grant records to
retrieve. Specific details about what records are involved and how the
selection return values are determine are implementation specific and will
be documented on a case-by-case basis.

	opts - a Keyword List of optional parameters which may be provided. The
only general option is listed below, each specific implementation of this
function may extend the available options as appropriate to the
implementation.
	permissions - a list of specific Permission names to lookup. This is
usually supplied as a limiting filter; without this list the typical
behavior is to return all of the permissions for a given Permission
Functional Type filtered only by the selector data. Again, the details
of the filtering or inclusion using this option will be implementation
specific and documented for each individual implementation.

 Link to this function

 grant_perm_role(selector, perm_role_id)

 @spec grant_perm_role(
 MscmpSystMcpPerms.Types.AccessAccountPermsSelector.t(),
 MscmpSystPerms.Types.perm_role_id()
) :: :ok | {:error, MscmpSystError.t()}

Grants a Permission Role to the given selector.
On successful execution of the grant, the function will return a simple :ok.
On error, an error tuple is returned.

 Parameters

	selector - this value is a struct which determines the specific
implementation of this function to call and which contains the keys/values
to use as the unique identifier of the user context to which you are
granting Permission Roles.

	perm_role_id - the record ID value of the Permission Role record which
you are granting to the user context identified by the selector.

 Link to this function

 list_perm_denials(selector, opts \\ [])

 @spec list_perm_denials(
 MscmpSystMcpPerms.Types.AccessAccountPermsSelector.t(),
 Keyword.t()
) ::
 {:ok, [Msdata.SystPerms.t()] | []} | {:error, MscmpSystError.t()}

List all explicit denials of Permissions from the identified user context.
An assumption made by this module is that Permission Roles are granted to
users as whole roles, but individual Permissions may be explicitly denied from
users on a Permission by Permission basis. This function is intended to list
Permission denials for a user context so that the denials may be managed.
Some user contexts may not offer explicit Permission denials. In these cases
this function should simply return a success tuple containing an empty list as
the value.

 Parameters

	selector - this value is a struct which determines the specific
implementation of this function to call and which contains the keys/values
to use in selecting which Permission denial records to retrieve. Specific
details about what records are involved and how the selection return values
are determine are implementation specific and will be documented on a case-
by-case basis.

	opts - a Keyword List of optional parameters which may be provided. The
only general option is listed below, each specific implementation of this
function may extend the available options as appropriate to the
implementation.

 Link to this function

 list_perm_grants(selector, opts \\ [])

 @spec list_perm_grants(
 MscmpSystMcpPerms.Types.AccessAccountPermsSelector.t(),
 Keyword.t()
) ::
 {:ok, [Msdata.SystPermRoles.t()]} | {:error, MscmpSystError.t()}

Lists all of the Permission Role records granted to the user context
identified by the selector, including the Rights/Scopes of the grants.
This function facilitates understanding what roles have been granted to user
and what Permissions/Rights/Scopes those roles grant to the user. This list
is intended to be descriptive and not directly indicating the effective grants
applied to the user. Typical uses of this function are to populate lists of
Permission Role Grants for the purposes of managing user access.

 Parameters

	selector - this value is a struct which determines the specific
implementation of this function to call and which contains the keys/values
to use in selecting which Permission and Permission Role Grant records to
retrieve. Specific details about what records are involved and how the
selection return values are determine are implementation specific and will
be documented on a case-by-case basis.

	opts - a Keyword List of optional parameters which may be provided. The
only general option is listed below, each specific implementation of this
function may extend the available options as appropriate to the
implementation.
	include_perms - a boolean option which, when set true, will preload
the Msdata.SystPermRoleGrants perm data. The default value for this
option is false.

 Link to this function

 revoke_perm_role(selector, perm_role_id)

 @spec revoke_perm_role(
 MscmpSystMcpPerms.Types.AccessAccountPermsSelector.t(),
 MscmpSystPerms.Types.perm_role_id()
) :: {:ok, :deleted | :not_found} | {:error, MscmpSystError.t()}

Revokes a previously granted Permission Role from the given selector.
On successful execution a success tuple is returned. If the grant was
actually deleted this tuple will take the form {:ok, :deleted}. If the
grant was not found for the user context identified by the selector then the
{:ok, :not_found} tuple will be returned. Any other outcome is an error
resulting in an error tuple being returned.

 Parameters

	selector - this value is a struct which determines the specific
implementation of this function to call and which contains the keys/values
to use as the unique identifier of the user context from which you are
revoking Permission Roles.

	perm_role_id - the record ID value of the Permission Role record which
you are revoking from the user context identified by the selector.

 MCP Processing

 Link to this function

 bootstrap_tenant(params)

 @spec bootstrap_tenant(MssubMcp.Types.tenant_bootstrap_params()) ::
 {:ok, MssubMcp.Types.tenant_bootstrap_result()} | {:error, MscmpSystError.t()}

Bootstraps the initial setup of either the MCP Application Platform or a new
tenant.
In this context, a "tenant" is the combination of an MCP Owner Record, a
linked Access Account record and related Authenticator, and an Application
Instance.
This process also bootstraps the system Owner and Platform Administrator
Access Account if the Application Platform itself has not been previously set
up.

 Link to this function

 process_operation(operation)

 @spec process_operation((-> any())) :: any()

Processes the given function in the context of the MCP services & Datastore.
Returns the return value of the provided function.

 Parameters

	operation - a function which wraps the operations to be executed in
the MCP service context.

 Examples

Retrieving an Msdata.SystOwners record from the MCP database.
iex> mcp_operation = fn -> MscmpSystInstance.get_owner_by_name("owner1") end
iex> {:ok, %Msdata.SystOwners{}} = MssubMcp.process_operation(mcp_operation)

 Link to this function

 start_mcp_service_context()

 @spec start_mcp_service_context() ::
 {datastore_context :: atom() | pid() | nil,
 enums_service_name :: MscmpSystEnums.Types.service_name() | nil,
 settings_service_name :: MscmpSystSettings.Types.service_name() | nil}

Establishes MCP Subsystem process references in the calling process's process
dictionary.
Datastore, Enumerations, and Settings services are determined by entries in
the executing process's Process Dictionary. The MCP Subsystem as an OTP
Application starts these services under pre-determined local names which are
in turn set in the Process Dictionary by this function.
This function is used by processes wishing to set MCP Subsystem services as
the long running context spanning multiple function calls by the process. For
example, a GenServer that only every access MCP Subsystem Datastores or
Services can call this during the initialization process which will live for
the life of the GenServer or until they are explicitly unset by some other
call.
The return value of the call provides the caller references to identifiers for
each of the three previously set target services represented as a tuple:
{
 <previous_datastore_context>,
 <previous_enums_service_name>,
 <previous_settings_service_name>
}
This value is suitable to pass to stop_mcp_service_context/1 if the MCP
Subsystem context setting is only intended to be temporary.

 Link to this function

 stop_mcp_service_context(replacement_service_names \\ {nil, nil, nil})

 @spec stop_mcp_service_context(
 {datastore_context :: atom() | pid() | nil,
 enums_service_name :: MscmpSystEnums.Types.service_name() | nil,
 settings_service_name :: MscmpSystSettings.Types.service_name() | nil}
) :: :ok

Unsets the MCP Subsystem service references from the process's Process
Dictionary.
This function unsets the MCP Subsystem service references in one of two ways
depending on the argument passed to the function. If a tuple in the form:
{
 <new_datastore_context>,
 <new_enums_service_name>,
 <new_settings_service_name>
}
is passed, the references in the tuple will be set as the new service context
for the process. This is useful if a previous context existed and only
temporary access to the MCP Subsystem context was required (see
start_mcp_service_context/0 for the most common source for these values.)
Otherwise the service context values in the Process Dictionary are set to
nil and calls to other contextually sensitive functions will fail until a
new service context is set for the process.
The function simply returns :ok once it has stopped the MCP Subsystem
service context.

 Parameters

	replacement_service_names - an optional tuple of references to the
services which are to replace the MCP Subsystem service references being
unset by this function. See the above for the form of the tuple. If this
parameter is omitted, the Process Dictionary references for context services
will be set nil, meaning no service context aware functions will work
properly until a new service context is set.

 Functions

 Link to this function

 get_perm_role_id_by_name(perm_func_type_name, perm_role_name)

 @spec get_perm_role_id_by_name(
 MscmpSystPerms.Types.perm_functional_type_name(),
 MscmpSystPerms.Types.perm_role_name()
) :: MscmpSystPerms.Types.perm_role_id() | nil | {:error, MscmpSystError.t()}

Retrieves the Permission Role record ID as found by its functional type name
and Internal Name.
The function will either return the record ID of the requested Permission Role
or nil of that role was not found. If an error occurs an error tuple is
returned.

 Parameters

	perm_func_type_name - the Internal Name of the Permission Functional Type
to which the search should be restricted. While the Permission Role name
itself is unique, specifying the Permission Functional Type serves as a check
that request context is correct.

	perm_role_name - the Internal Name value of the Permission Role to search
for.

 Examples

Retrieve the record ID of a Permission Role record.
iex> _perm_role_id =
...> MssubMcp.get_perm_role_id_by_name("func_type_1", "perm_role_1")
Searching for a non-existent record returns nil.
iex> MssubMcp.get_perm_role_id_by_name("func_type_1", "nonexistent_role")
nil

 Link to this function

 get_setting_value(setting_name, setting_type)

 @spec get_setting_value(
 MscmpSystSettings.Types.setting_name(),
 MscmpSystSettings.Types.setting_types()
) ::
 any()

Retrieves the value of the given type for the requested setting.

 Parameters

	setting_name - the name of the setting for which to retrieve a value.

	setting_type - the type of value which to return.

 Examples

iex> MssubMcp.get_setting_value(
...> "get_example_setting",
...> :setting_decimal_range)
%MscmpSystDb.DbTypes.DecimalRange{
 lower: Decimal.new("1.1"),
 upper: Decimal.new("99.99"),
 lower_inclusive: true,
 upper_inclusive: false
}

 Link to this function

 get_setting_values(setting_name)

 @spec get_setting_values(MscmpSystSettings.Types.setting_name()) ::
 Msdata.SystSettings.t()

Retrieves all values associated with the requested setting.

 Parameters

	setting_name - the name of the setting for which to retrieve values.

The successful return of this function is an instance of the
Msdata.SystSettings struct containing the values requested.

 Examples

iex> MssubMcp.get_setting_values("get_example_setting")

 Link to this function

 list_all_settings()

 @spec list_all_settings() :: [Msdata.SystSettings]

Retrieves all values for all settings.
This function returns all other setting metadata, such as the records' IDs,
descriptions, etc.

 Examples

iex> MssubMcp.list_all_settings()

 Link to this function

 set_setting_value(setting_name, setting_type, setting_value)

 @spec set_setting_value(
 MscmpSystSettings.Types.setting_name(),
 MscmpSystSettings.Types.setting_types(),
 any()
) :: :ok | {:error, MscmpSystError.t()}

Sets the value of any one setting type for the named setting.

 Parameters

	setting_name - the name of the setting to update with the new value.

	setting_type - sets which of the different available value types is
being updated.

	setting_value - is the new value to set on the setting. Note that the
setting value must be appropriate for the setting_type argument or an
error will be raised.

 Examples

iex> MssubMcp.set_setting_value(
...> "set_example_setting",
...> :setting_decimal,
...> Decimal.new("1029.3847"))
:ok

 Link to this function

 set_setting_values(setting_name, update_params)

 @spec set_setting_values(
 MscmpSystSettings.Types.setting_name(),
 MscmpSystSettings.Types.setting_service_params()
) :: :ok | {:error, MscmpSystError.t()}

Sets one or more of the available setting types for the named setting.
This function is similar to set_setting_values/4, except that multiple
setting types can have their values set at the same time. In addition to the
typed setting values, the setting display name and/or user description values
may also be set.

 Parameters

	setting_name - the name of the setting to update with the new values.

	update_params - is a map that complies with the
MscmpSystSettings.Types.setting_service_params() type specification and
includes the updates to setting type values, updates to the display_name
value, and/or updates to the user_description value.

 Examples

iex> update_values = %{
...> user_description: "An example of updating the user description.",
...> setting_integer: 6758,
...> setting_date_range:
...> %MscmpSystDb.DbTypes.DateRange{
...> lower: ~D[2022-04-01],
...> upper: ~D[2022-04-12],
...> upper_inclusive: true
...> }
...> }
iex> MssubMcp.set_setting_values(
...> "set_example_setting",
...> update_values)
:ok

 OEBPS/dist/epub-TCI3LGHF.js
(()=>{var d=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var c="ex_doc:settings",h={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=h,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(c);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._storeSettingsLegacy(),localStorage.setItem(c,JSON.stringify(this._settings))}catch(t){console.error(`Failed to persist settings: ${t}`)}}_loadSettingsLegacy(){localStorage.getItem("tooltipsDisabled")!==null&&(this._settings={...this._settings,tooltips:!1}),localStorage.getItem("night-mode")==="true"&&(this._settings={...this._settings,nightMode:!0}),this._settings.nightMode===!0&&(this._settings={...this._settings,theme:"dark"})}_storeSettingsLegacy(){this._settings.tooltips?localStorage.removeItem("tooltipsDisabled"):localStorage.setItem("tooltipsDisabled","true"),this._settings.nightMode!==null?localStorage.setItem("night-mode",this._settings.nightMode===!0?"true":"false"):localStorage.removeItem("night-mode"),this._settings.theme!==null?(localStorage.setItem("night-mode",this._settings.theme==="dark"?"true":"false"),this._settings.nightMode=this._settings.theme==="dark"):(delete this._settings.nightMode,localStorage.removeItem("night-mode"))}},f=new s;function l(){["warning","info","error","neutral","tip"].forEach(t=>{i(`blockquote h3.${t}, blockquote h4.${t}`).forEach(e=>{e.closest("blockquote").classList.add(t)})})}document.addEventListener("click",function(o){if(window.innerWidth<=768){let t=o.target.closest('a[href^="#"]');if(t){o.preventDefault();let e=t.getAttribute("href").substring(1),n=document.getElementById(e);if(n){let u=n.getBoundingClientRect().top+window.scrollY-45;window.scrollTo({top:u,behavior:"smooth"})}}}});var m="hll";function g(){p()}function p(){i("[data-group-id]").forEach(t=>{let e=t.getAttribute("data-group-id");t.addEventListener("mouseenter",n=>{a(e,!0)}),t.addEventListener("mouseleave",n=>{a(e,!1)})})}function a(o,t){i(`[data-group-id="${o}"]`).forEach(n=>{n.classList.toggle(m,t)})}r(()=>{g(),l()});})();

